
JDroidLib & JTurtleLib Installation & Use

Version 2.00, for the Windows OS, differences to Linux OS and Mac OS are annotated

The JDroidLib and the JTurtleLib frameworks are distributed as ZIP archive and
contain the following subfolders:

 App: Sample apps for Android smartphones/tablets that supports Android
V2.2 up

 Tutorial: Apps that are part of the JDroidLib or JTurtleLib tutorial on website
www.aplu.ch/android or www.aplu.ch/jturtlelib

 Lib: JDroidLib.jar/TcpALib.jar or JTurtleLib.jar library files

 Doc: The JavaDoc for JDroidLib/TcpALib or JTurtleLib

 ProjectBuilder: the GUI version of the project builder, including source

 LogCat: a user friendly interface to the Android Debug Logger
 InstallUSBLinux: USB device installer for Android smartphones (under Linux)
 InstallationAndUse: This installation guide

Preliminary: In any case the Java Runtime Environment (JRE) must be installed

Important: If you use our Online-Editor/Compiler (at http://www.java-online.ch) and
you download the app directly to the smartphone, no additional installations are
necessary. Try it out and enjoy the feeling of success to create your first Android app
even if you are a Java beginner.

(Moreover from http://clab2.phbern.ch/jOnline/webstart/InstallEmul.jnlp a slim-
emulator version is installed in the subfolder .jdroidemul of the user home directory.
There you will find the starter application ExecEmul.jar.)

Eclipse IDE

(If you need help, consult the many installation guides on the Internet)

Installation

 Download and install the most recent version JDK SE in any folder (called
<idehome> here), see
http://www.oracle.com/technetwork/java/javase/downloads

 (Windows only:) Set an environment variable JAVA_HOME that points to
<idehome> and add <idehome>\bin to the path

 Test the installation by opening a command shell and type javac. A usage
information must be shown

 Download the Android SDK from http://developer.android.com/sdk.
Unpack the zip/tgz in any folder, called <androidsdk> here. (Windows: Add
<sdkhome>\tools and <sdkhome>\platform-tools to the path)

 Start the Android-SDK Manager (Windows: SDK Manager.exe in <sdkhome>,
Linux, Mac: android in <sdkhome>/tools, start with command ./android).
Choose package to install. For a minimum installation remove all options but
SDK-Android SDK-Tools Version 6 and Platform 2.2. Wait for the download
and installation of these options

 With the Android-SDK Manager select Virtual devices and New. Make the
following entries:

Name: MyEmulator
Target: Android 2.2
SD Card: 2000 MiB
Build-In: HVGA

Click Create and wait for the confirmation message. Start the emulator by clicking the
Start button (you need some patience).

 Download Eclipse from http://www.eclipse.org/downloads (e.g. version Eclipse
IDE for Java Developers). Unpack it it in any folder. Start Eclipse.

 Install the ADT plugin:

Help | Install Software
Click button Add
Enter any identifier name

Enter the location https://dl-ssl.google.com/android/eclipse

Click Ok and select Developer Tools
Click Next to start the installation of the plugin

 Restart Eclipse and select Window | Preferences. Select Android and enter
the path to the Android-SDK (<sdkhome>)

 Download the JDroidLib or JTurtleLib distribution from http://www.aplu/android
or http://www.aplu.ch/jturtlelib and unpack it in any folder. Copy JDroidLib.jar
or JTurtleLib in some folder where you store your library jars. Copy
ProjectBuilder.jar in any folder where you store special programs/applications
and create a link to start the ProjectBuilder from the desktop or application
launch bar (Linux/Mac: Give ProjectBuilder.jar executable permission by
typing chmod +x ProjectBuilder.jar. Right click and select Open with Sun Java
Runtime)

Use:

 File | New | Other
 Choose Project: Android | Android Project
Project name: Apps (example)
Build target: Android 2.2
Application name: MyApp1 (example)
Package name: ch.aplu.app (example)
Create Activity: remove selection
Finish

 Start the ProjectBuilder (create a link to ProjectBuilder.jar). Enter in text fields:
Project Root: your project root folder
Package Name: ch.aplu.app (example)
App Name: MyApp1 (example)
Library File(s): the fully qualified path to JDroidLib.jar or JTurtleLib (not both!),
other libraries separated by semicolon
Sprite Folder: the fully qualified path to your sprite image files (if you want to
change the App logo, copy your own jdroid_gglogo.png in this folder)
Media Folder: the fully qualified path to your media files (e.g. wav, mp3)
Build

 Press F5 (Refresh). You see MyApp1.java in the Package Explorer.

 In the Package Explorer right-click on the project. Select Properties |
Resources | Java Build Path | Libraries | Add External Jars and select
JDroidLib.jar or JTurtleLib found in <projectroot>\libs
Press Ok

 Connect your smartphone or start the Android emulator. Press the Run button
and select Android Application. The project will be compiled, packed, signed
and installed and hopefully started.

.

Netbeans IDE

(If you need help, consult the many installation guides on the Internet. We
recommend to use Eclipse on Linux/Mac platforms. The following guide is for
Windows only)

Installation

 Download and Install the most recent version JDK SE in any folder (called
<idehome> here), see
http://www.oracle.com/technetwork/java/javase/downloads/index.html
Set an environment variable: JAVA_HOME that points to <idehome> and add
<idehome>\bin to the path

 Download the Android SDK from http://developer.android.com/sdk/index.html
Unpack the zip in any folder, e.g. c:\programs\android-sdk (called
<androidsdk> here).
Add <sdkhome>\tools and <sdkhome>\platform-tools to the path

 Start the Android-SDK Manager (found in <sdkhome>). Choose package to
install. For a minimum installation remove all options but SDK-Android SDK-
Tools Version 6 and Platform 2.2. Wait for the download and installation of
these options.

 With the Android-SDK Manager select Virtual devices and New. Make the
following entries:

Name: MyEmulator
Target: Android 2.2
SD Card: 2000 MiB
Build-In: HVGA

Click Create and wait for the confirmation message. Start the emulator by clicking the
Start button (you need some patience).

 Download Netbeans from http://netbeans.org/downloads (version Java SE is
enough) and install it in any folder

 Download Ant from http://ant.apache.org (binary distribution) and unpack it in
any folder (called <anthome>). Set an environment variable ANT_HOME that
points to <anthome> and add <anthome>\bin to the path

 Install the Netbeans Android plugin:

Start Netbeans
Go to Tools | Plugins | Settings and click Add
Enter any name and the URL:
 http://kenai.com/downloads/nbandroid/updatecenter/updat

es.xml

Go to Plugins | Available Plugins and search for "android"
Select Android and the Test Runner version that corresponds to the installed
Netbeans version
Press Install and confirm everything

 Download the JDroidLib or JTurtleLib distribution from
http://www.aplu.ch/android or http://www.aplu.ch/jturtlelib and unpack it in any
folder. Copy JDroidLib.jar or JTurtleLib in some folder where you store your
library jars. Copy ProjectBuilder.jar in any folder where you store special
programs/applications and create a link to start the ProjectBuilder from the
desktop or application launch bar.

Use:

 File | New Project
 Choose Project: Android | Android Project
Press Next

 Enter Project name: Apps (example)
Select Set as Main Project
Package name: ch.aplu.app (example)
Activity Name: MainActivity
If you never did it before, click button Manage Android SDK and select the
Android SDK home directory (<sdkhome>)
Target Platform: Android 2.2
Finish

 Start the ProjectBuilder. Enter in text fields:
Project Root: your project root folder
Package Name: ch.aplu.app (example)
App Name: MyApp1 (example)
Library File(s): the fully qualified path to JDroidLib.jar or JTurtleLib.jar (not
both), other libraries separated by semicolon
Sprite Folder: the fully qualified path to your sprite image files files (if you
want to change the App logo, copy your own jdroid_gglogo.png in this folder)
Media Folder: the fully qualified path to your media files (e.g. wav, mp3)
Build

 Right-click the project in the Netbeans Project Manager and select Clean and
Build. The Android app is created and the error messages should disappear.
Under Source Packages you find the template source MyApp1.java and
MainActivity.java. MainActivity.java is never used and can be deleted. If the
Project is selected as Main Project, you may click the title bar Run button to
compile/pack/sign/download and start the app (in some circumstances you
need to click twice the Run button).

.

BlueJ (and other Java Editors/IDEs)

(If you need help, consult the many installation guides on the Internet. We
recommend to use Eclipse on Linux/Mac platforms. The following guide is for
Windows only)

Installation

 Download and Install the most recent version JDK SE in any folder (called
<idehome> here), see
http://www.oracle.com/technetwork/java/javase/downloads/index.html
Set an environment variable JAVA_HOME that points to <idehome> and add
<idehome>\bin to the path

 Download the Android SDK from http://developer.android.com/sdk/index.html
Unpack the zip in any folder, e.g. c:\programs\android-sdk (called
<androidsdk> here).
Add <sdkhome>\tools and <sdkhome>\platform-tools to the path

 Start the Android-SDK Manager (found in <sdkhome>). Choose package to
install. For a minimum installation remove all options but SDK-Android SDK-
Tools Version 6 and Platform 2.2. Wait for the download and installation of
these options.

 With the Android-SDK Manager select Virtual devices and New. Make the
following entries:

Name: MyEmulator
Target: Android 2.2

SD Card: 2000 MiB
Build-In: HVGA

Click Create and wait for the confirmation message. Start the emulator by clicking the
Start button (you need some patience).

 Download Ant from http://ant.apache.org (binary distribution) and unpack it in
any folder (called <anthome>). Set an environment variable ANT_HOME that
points to <anthome> and add <anthome>\bin to the path

 Download the JDroidLib or JTurtleLib distribution from
http://www.aplu.ch/android or http://www.aplu.ch/jturtlelib and unpack it in any
folder. Copy JDroidLib.jar or JTurtleLib.jar in some folder where you store your
library jars. Copy ProjectBuilder.jar in any folder where you store special
programs/applications and create a link to start the ProjectBuilder from the
desktop or application launch bar.

 Download BlueJ from http://www.bluej.org and install it in any folder. Start
BlueJ and select Tools | Libraries. Click Add and insert the fully qualified path
to JDroidLib.jar or JTurtleLib and to android.jar in the platform\android-8
subfolder of the installed Android-SDK, e.g. <sdkhome>\platforms\android-
8\android.jar.

 Create a folder where you put your BlueJ projects, e.g. e:\mybj.

Use:

 With the file explorer create a new project folder in your BlueJ project folder,
e.g. MyApp

 Start BlueJ. Select Project | New Project and choose the folder e:\mybj\MyApp
(example). Enter src as filename and press Create
.

 Select Edit | New Package and enter a package name, e.g. ch.aplu.ex. Press
Ok.

 In a command shell execute the following command (adapt to your example,
all on one line):

android create project --target 1 --path e:\mybj\MyApp

--activity MyApp1 --package ch.aplu.ex

(the target number corresponds to the id of the Android version that depends
how you installed the Android SDK. Perform command

android list targets

to find out which id corresponds to Android 2.2)

 Start the ProjectBuilder. Enter in text fields:
Project Root: e:\mybj\MyApp (example)
Package Name: ch.aplu.ex (example)

App Name: MyApp1 (example)
Library File(s): the fully qualified path to JDroidLib.jar or JTurtleLib.jar (not
both!), other libraries separated by semicolon
Sprite Folder: the fully qualified path to your sprite image files (if you want to
change the App logo, copy your own jdroid_gglogo.png in this folder)
Media Folder: the fully qualified path to your media files (e.g. wav, mp3)
Build

Click Replace in the warning dialog

 MyApp1.java is now modified to the the JDroidLib or JTurtleLib template. In
BlueJ select the folder ch, then aplu, then ex. Select Menu Edit | Add class
from file and search for MyApp1. The MyApp1 icon appears in the project
window It may be double-clicked to show it in the BlueJ editor and should
compile without errors

 In a command shell select the project root as current directory (e.g.
e:\mynb\MyApp). Type

ant debug

and ant will compile/pack/sign your Android app. MyApp1-debug.apk is found
in the subfolder bin.

 Select the bin subfolder as current directory and type

adb install -r MyApp1-debug.apk

to install it on a running emulator or USB-connected smartphone

 Start the app on the emulator or the smartphone

 Modify the source in BlueJ, press Compile and repeat the steps with ant
debug and adb install. The new app should start

 You may add more classes to the project by selecting Menu Edit | New Class
in the ch.aplu.ex1 project view, where MyApp1 resides. If you need sprite
images, select the Sprites Folder in the ProjectBuilder, where the sprites
resides and click Build and then Keep

Remarks:

 The command line usage could be avoided by creating batch files

 As you see in this installation, only the editor of BlueJ is actually used, the IDE

compilation only serves to show syntax errors because ant debug

recompiles the source. Therefore any other Java editor (JCreater, Java
Editor, etc.) may be configured to develop JDroidLib apps analogously. (The
simple scripting facilities of JCreator may automate the building process
favorably.)

Hints to install apps via USB:

 Windows: Install the brand specific synchronization software, e.g. for HTC:
HTC Synch, for Samsung Kies. This will also install the USB drivers as well
(otherwise hard to find and install)
Linux: Execute InstallUSBLinux.jar found in the JDroidLib or JTurtleLib
distribution will install drivers for many Android devices of currently known
manufacturers.
Mac: Nothing to install, devices should be found automatically

 Setup your smartphone:
o Applications | Unknown sources: selected

o Development | USB debugging: selected

o Development | Stay awake: selected

o Do not enable your smartphone as external disk or as GSM modem
(for HTC, select Settings | PC connection | Charging only)

o Shutdown and restart the smartphone

 To test the USB connection, start a command shell and type

adb devices (Linux/Mac: ./adb devices)

The smartphone ID must be displayed. If no device is listed, shutdown the PC
and the smartphone and unplug the USB connection. Restart the PC and the
smartphone and reconnect the smartphone to the USB port.

 Manual installation of Android apps: Start a command shell and go to the
folder where the application apk resides. Type

adb install -r <appname.apk>

(Linux/Mac: ./adb -r <appname.apk>)

How to use the Debug Console

LogCat is GUI based shell to the Android Debugging facility. It assumes that adb
(and for Windows some additional DLLs) resides in the subdirectory .jdroidtools of
user home directory <userhome>.

When startet, it first checks if there is an attached device (emulator or real device). If
no device is found, the program exits with an error message.

If a device is found, the command adb logcat <filter> is spawned, where <filter> is the
only command line option. If no command line option is given, adb logcat is spawned.

The starter applications ExecDebugNNN.jar spawns LogCat.jar with the following
filters:

ExecDebugAplu.jar: *:S ch.aplu.android:V (displays JDroidLib/JTurtleLib message
only)
ExecDebugRT.jar: *:S AndroidRuntime:E ch.aplu.android:V (also displays realtime
messages)
ExecDebugAll.jar : no filter (displays all messages)

Installation:
Copy the distributed folder jdroidtoolsXXX (XXX indicates your OS) as .jdroidtools
(don't forget the leading period) in your home directory and create links to the
ExecDebugNNN.jar (or call LogCat.jar with the filter you want).

Supplements:

 To change the app icon, replace icon.png in the following folders:

<projectroot>\res\drawable-hdpi (72x72 dpi)
<projectroot>\res\drawable-mdpi (48x48 dpi)
<projectroot>\res\drawable-ldpi (36x36 dpi)

 If your app is not installed or does not start, check whether another app with
the same name or the same package is already installed. (This may cause a
signature error if the app were developed and downloaded from a different
computer). Remove the app and reinstall it.

 You may create several apps within the same project. Select the current app
name in the ProjectBuilder and press Build.

 To add sprite images to the application, copy the files in the sprite folder as
selected in the ProjectBuilder and press Build.

 To avoid the compiler warning on some systems warning
'includeantruntime' was not set, add a new line in <sdk-
root>\tools\ant\main_rules.xml in the section <javac encoding=
includeantruntime="false"

 In details the ProjectBuilder performs the following tasks:
o Creates a AndroidManifest.xml adapted to JDroidLib/JTurtleLib apps

o Replaces <projectroot>\res\layout\main.xml
o Creates some layout resources in <projectroot>\res\layout
o Replaces <projectroot>\res\values\strings.xml
o Creates a template source file

<projectroot>\src\<packagepath>\<ApplicationName>.java

o Copies the library files in <projectroot>\libs

o Copies all files from <Sprites Folder> to <projectroot>\res\drawable

o Copies all files from <Media Folder> to <projectroot>\res\raw

o Copies jdroid_gglogo.png/turtle_white.gif to <projectroot>\res\drawable

o Replaces <ApplicationName> in build.xml

 To change the turtle image, put your own turtle_white.gif in the sprites folder.

White pixels will take the current turtle color (background: transparent pixels)

