
University of Berne Department of Teachers Training

Aegidius Plüss

Introduction to object-oriented programming with

C++

and the MS-Windows framework

Champ

Version 1.04

May 1997

2

An Introduction to Object Orientied Programming using Object Turtles.

Author:

Prof. Dr. Aegidius Plüss
University of Berne, Switzerland
E-mail: pluess@sis.unibe.ch

Developer of Champ:

Salvisberg Software & Consulting
Bellevuestrasse 18
CH-3095 Berne, Switzerland
Fax: (+41)(+31) 972'42'10
E-mail: info@salvisberg.com
WEB: www.salvisberg.com

3

1 Introduction

Even though there are many opinions concerning the importance of any particular theme
in a basic course on computer science, it is a widely acclaimed fact that treating
algorithmic processes is particularly important. Usually this is done in connection with a
programming course, since only the use of a programming language allows algorithms to
be formulated precisely and then be executed on a computer.

However, opinions differ strongly as to which programming language and environment to
choose, and how to proceed methodologically. Modern, practically oriented schooling
increasingly demands that the programming language should be one widely used,
available on different computer platforms and operating systems, and that both the
development and the execution of programs should take place under a graphical
operating system. In addition, the programming language should on the one hand be
simple enough for beginners without any previous knowledge of programming to handle;
on the other hand, the same language should be applicable to teaching advanced
students more complex matters, object oriented programming (OOP) in particular.

Especially because of this last demand, all script-like languages such as HyperCard and
Toolbook are out of the question. And even in their most modern versions, languages
popular with beginners, such as Basic or Logo, are not independent enough of a
particular platform, nor have they enough features to enable the teaching of data
encapsulation and OOP techniques.

From the theory of learning we have long known that introductory instruction to a new,
motivating subject can have a strongly determining effect on students, so that later it
becomes very hard to get rid of bad habits caused either by errors or by
oversimplification. This is why already in 1969, in his famous article "Programming is
considered to be harmful", Dijkstra demanded the total abolishment of programming
classes in the lower grades rather than having students taught wrong programming
methods.

In recent years there has been a change within computer science towards object oriented
programming. This new technique is so fundamentally different from the classical
imperative, functional or logical programming, that one might even speak of a change of
paradigms. If the beginner is to be introduced to this new technique, or at least his later
access to it is not to be blocked, it is necessary that small introductory programs be
developed according to object oriented concepts right from the beginning.

To give a first idea, it is good to have students in beginners' classes understand screen
elements such as buttons as objects with certain properties and behavior (usually the
routines triggered by mouse actions). But decisive for object oriented programming is the
concept of class hierarchy, within which the properties and behavior of objects can be
extended through inheritance by class derivation.

For this reason it is dangerous to use a simple programming language in which, although
it might allow the construction of screen elements with properties and behaviors, it is not
possible to use inheritance.

4

In spite of the great variety of programming languages, it is not easy to find one that fulfills
all the demands mentioned above. If both the possibility of using OOP techniques and a
high rate of recognition at educational institutions are considered particularly important,
the selection is limited to (Object-)Pascal, C++, Smalltalk, Oberon and Eiffel. Should, in
addition, the language be available across various computer platforms and widely used by
professionals around the world, C++ is a good choice for use in an introductory computer
science course.

It is sufficiently known that compared to languages especially designed for teaching like
Pascal or Eiffel, C++ is a complex language, a fact which repeatedly leads to the claim
that it is not a suitable language for beginners. Our longterm experience in teaching
programming to young students (of around 16 years of age) shows, however, that it is
possible to develop a methodologically well worked-out concept for courses using C++ so
that success rates are as good or better than in former courses using Logo, Basic or
Pascal.

2 Turtle graphics with multiple object turtles

In our experience, it has proven to be most useful to make certain programming tools
available to the beginner in the form of frameworks or libraries. Since young people in
particular strongly respond to graphic elements, a graphics library that is easy to handle
should be at their disposal right from the beginning. For program development under a
complex graphic user interface such as Windows, elaborate libraries that suitably hide its
complexity are almost a necessity.

Already in 1980, with the programming language Logo, Papert created a graphically
oriented learning environment [4]. For many teachers, the Logo turtle means getting away
from dry text and number oriented problems, and it corresponds to a general esthetic
need for graphical animation. Unfortunately, especially with professionals Logo has not
enjoyed great success. This is by and large due to three causes:

- The programming environments of most Logo versions are outdated and are not being
developed any more.

- Logo focuses too much on recursions, a method which is elegant, but which is not at all
easy to understand and is of minor importance in most other programming languages.

- Logo does not lend itself to numeric applications and is therefore nearly unknown by
professional programmers.

Nonetheless, school experience shows that particularly due to its turtle graphics, Logo is
a good language for beginners [6]. True hymns of appraisal have been written about
turtlegraphics, stressing its advantage - especially for beginners' courses - of direction
oriented over coordinate oriented graphics, and of its animation through the moving
turtle.

5

In a beginners' course focusing on OOP, a better example for objects than screen turtles
can hardly be imagined. They have an intuitive reality, they possess properties (color,
position, direction) and behavior (go forward, turn left). It is also obvious that the turtles
can gain further properties (name, etc.) and behavior (draw circle, etc.) through
inheritance.

Since several turtle objects are present at the same time in an object oriented turtle
graphics system, the system must be able to handle the overlapping of turtle shapes and
their traces correctly.

3 Programming under a graphic oriented user interface (GUI)

During recent years, window-based user interfaces have become a standard in practice.
In lower-grade computer science courses, students are trained to work with such
interfaces, so that nowadays most of them never really get into contact with command line
operating systems any more. Because of this fact, it is hardly motivating to then do
programming in a text oriented environment. On the other hand, the graphic user interface
and the handling of events or messages makes developing programs a complicated
matter, which could lead to the disadvantage of having to spend more course time
developing the user interface and the message handling than actually treating the
algorithmically interesting parts of the program.

In the professional world, the complexity of programming under a GUI is intercepted
through system calls (Application Programming Interface (API)) and class libraries or
frameworks such as Microsoft Foundation Class (MFC) or Borland's Object Windows
Library (OWL). The latter however requires a sound knowledge of C++ right from the
start, and therefore cannot be used in beginners' courses.

All our programming courses strictly followed the principle that all source code visible to
the student must be fully comprehensible with the student's actual knowledge. Code
generating tools like Borland's Delphi or AppExpert, powerful for professional
programmers, contain sophisticated code skeletons which could hardly be explained to
beginners.

For beginners' courses and scientific applications concentrating on algorithms, a
development environment is needed which automatically produces genuine GUI-oriented
programs from a program code that is not or is hardly different from the traditional text-
oriented form. It should also be possible to write programs under a modern operating
system like MS-Windows without previous knowledge of OOP. Even for more complex
user interfaces using mouse actions, dialogues, and menus, elementary OOP techniques
like instantiating objects or calling member functions should be sufficient. And most
important, the concept of message queues should be avoided in message handling.
Instead, all events should trigger a user defined callback function which handles the
event.

6

One of the advantages of programming under a modern GUI-based operating system is
independence of hardware. So, for example, the screen and the printer are automatically
adapted to the available devices without any modification of the program.

4 The Champ framework

The framework Champ was developed according to the principles shown above in order
to make it possible for beginners in programming, but also for teachers and scientists to
develop C++ programs with little effort, but all the same with MS-Windows' functionality
fully conserved. (For Champ features, see appendix 1.)

In order to illustrate the extreme simplicity of programming with Champ, the first program
will draw a diagonal line in a graphics window. It uses global functions (their names
starting with a g) and the default floating point coordinate system x = 0..1, y = 0..1. The
window has a system menu to copy graphics into Windows' clipboard or to any attached
printer.

#include <champ.h>

void gmain ()
{
 ginit("First Application");
 gpos(0, 0);
 gdraw(1, 1);
}

In order to promote object oriented methods right from the beginning, it is better to see
windows as instances of objects of a predefined class CPWindow, which means not using
global functions. The following program produces a window object myWindow and shows
it on the screen. The member functions pos() and draw() draw inside the window. Since
according to the block scope of an instance the window object would automatically be
destroyed as soon as gmain were quit, the program is made to wait with getch() until a key
is pressed.

#include <champ.h>

void gmain ()
{
 CPWindow myWindow("First Application");
 myWindow.pos(0, 0);
 myWindow.draw(1, 1);

 getch();
}

The OOP version is not only more elegant, but it also makes it possible to draw several
windows at the same time by producing several CPWindow instances.

#include <champ.h>

7

void gmain ()
{
 CPWindow first("First Window");
 CPWindow second("Second Window");

 first.pos(0, 0);
 first.draw(1, 1);
 second.penColor(RED);
 second.circle(0.5, 0.5, 0.2)
}

(For syntax conventions, see appendix 2.)

5 A course concept for object oriented programming with C++
using object turtles

It would be far too difficult for beginners to define C++ classes from scratch. However,
they can easily use predefined objects, since creating them is not more complicated than
defining a variable in a language that is not object oriented. Only after having mastered
the basics of OOP using predefined classes, are the students taught to construct classes
from scratch.

Our idea is to use the most motivating element of Logo, the turtle graphics system, in an
introductory course on C++. This does not mean that the student programs in Logo. He
simply uses C++ in a more pleasant and motivating way than is presented in most
introductory textbooks. The full Logo turtle command set is supported. A turtle is "created"
and appears on the screen whenever a turtle object is instantiated. Object turtles can also
be dynamically created and destroyed and all problems of visibility and overlapping of
multiple turtles on the screen are handled correctly. The total number of turtles is
restricted only by memory size and performance degradation. The turtle graphics library is
smoothly integrated into the programming environment to guarantee that the beginner
does not see much difference between reserved words of the C++ language and turtle
commands.

In the following it is assumed that the learner has little or no previous experience in
handling computers.

Step 1: First contact with the computer

Aim: Getting acquainted with keyboard, mouse, Windows interface, Integrated
Development Environment (IDE) and editor.

Procedure: The student is asked to correct or complete a (funny, stimulating) text
skeleton (ASCII file) using the IDE editor.

8

Remarks: At the same time, this exercise is meant to be an introduction to word
processing, so the most important features of a word processor should be
pointed out to the student.

9

Step 2: Instantiation

Aim: Getting to know the development cycle of a program (using the Champ
Project manager): editing, compiling, running, debugging on the
exampleof a sequence. Initializing the graphics system. Creating objects.
Calling member functions (sending messages).

Procedure: Create a turtle and draw a stair with 5 steps 20 units high and 20 units
wide.

Remarks: The first program example shows how to create objects and how to use
their behavior by calling member functions using the “point“ operator.

Default coordinates of turtle graphics: horizontal -200..200, vertical
200..200.

Block structuring is done with curly brackets (block start, block end).

Instantiation of the turtle object "john" and its "lifetime" inside a block. The
term "instantiation" is preferred to "variable definition".

The compiler regards names that differ only in capitalization as different
from each other.

Semicolons separate instructions. Other than that, screen design is free to
a large extent, but we follow some conventions very closely.

Functions are always to be provided with round brackets, in between
which the values (arguments) passed to the function are written.
(Functions that do not need an argument are given empty brackets, in
order to make them easily distinguishable from the other names.)

One-line comments are introduced by //, those that are more than one line
long are put between /*...*/. We prefer the single line comments and
reserve the multiline comments to “comment out“ whole sections when
debugging programs.

Supplements: Let two stairs be drawn by two turtles "john" and "laura" using also the
turtle member functions: turtleColor, penColor.

// LEARN02.CPP

#define OBJECT_TURTLE
#include <champ.h>

void gmain ()
{
 ginit("Learn02"); // Initialize graphics window
 Turtle john; // Instantiate object "john"

 john.forward(20); // Send msg: "Walk 20 steps"
 john.right(90); // Send msg: "Turn to the right"
 john.forward(20);

10

 john.left(90);

 john.forward(20);
 john.right(90);
 john.forward(20);
 john.left(90);

 john.forward(20);
 john.right(90);
 john.forward(20);
 john.left(90);

 john.forward(20);
 john.right(90);
 john.forward(20);
 john.left(90);

 john.forward(20);
 john.right(90);
 john.forward(20);
 john.left(90);
}

// LEARN02A.CPP

#define OBJECT_TURTLE
#include <champ.h>

void gmain ()
{
 ginit("Learn02a");
 Turtle john; // Instantiate object "john"
 Turtle laura; // Instantiate object "laura"

 laura.turtleColor(YELLOW);
 laura.penColor(GREEN);
 laura.setPos(200, 0);

 john.forward(20);
 john.right(90);
 john.forward(20);
 john.left(90);

 laura.forward(20);
 laura.left(90);
 laura.forward(20);
 laura.right(90);

 john.forward(20);
 john.right(90);
 john.forward(20);
 john.left(90);

 laura.forward(20);
 laura.left(90);
 laura.forward(20);
 laura.right(90);

 john.forward(20);

11

 john.right(90);
 john.forward(20);
 john.left(90);

 laura.forward(20);
 laura.left(90);
 laura.forward(20);
 laura.right(90);

 john.forward(20);
 john.right(90);
 john.forward(20);
 john.left(90);
 laura.forward(20);
 laura.left(90);
 laura.forward(20);
 laura.right(90);

 john.forward(20);
 john.right(90);
 john.forward(20);
 john.left(90);

 laura.forward(20);
 laura.left(90);
 laura.forward(20);
 laura.right(90);
}

Step 3: Repeat structure "repeat", more than one window

Aim: Getting to know the structure "repeat".

Procedure: It is impractical to write down identical program parts repeatedly. One of
the most important program structures is repetition. repeat(n) repeats an
instruction, resp. a block of instructions n times.

Remarks: Structuring into blocks with a bracket at the beginning and at the end of
the block becomes necessary as soon as more than one instruction is to
be executed within the "body". Attention should be paid to the screen
design (location of brackets, indents) applied here and in the following.

repeat is a structure which is not part of the programming language C++,
but which is provided by Champ to be used by the beginner.

In many cases it is instructive to see the turtle doing its work. Because
most computers are too fast, you may use speed to slow down the
movement.

Additions: The global function ginit("Learn03") actually creates a CPWindow object
and makes it visible. In order to cultivate object oriented thinking, it would
be better to use

CPWindow myWindow("Learn03");

12

instead. However, in this case an instantiated turtle must explicitly be
positioned inside the window:

Turtle john;
john.setPos(myWindow, 0, 0);

Whenever a window is instantiated, it automatically becomes visible. If it
is necessary to define some special properties (position, size, scrollbars
etc.) before displaying the window, the line

#define CP_INVISIBLE_WINDOW

may be added. Make the window visible or hidden any time using show(
true) resp. show(false).

It is to be remembered that the turtle vanishes from the screen as soon as
the window object exits its scope. This is why

getch();

is inserted in order to stop the execution until a key is pressed.

Let "john" draw a right stair in the window "water" and "laura" draw a left
stair in the window "land".

In order to give a real Windows “look and feel“ Champ graphics windows
may be easily embedded into a frame window.

Create a frame “playLand“ and let “john“ draw a stair in window „forest“
and, at the same time, “laura“ draw a circle in window „gras“.

// LEARN03.CPP

#define OBJECT_TURTLE
#include <champ.h>

void gmain ()
{
 ginit("Learn03");

 Turtle john;
 john.speed(20); // John is going slowly now

 repeat (5) // Repeat 5 times
 {
 john.forward(20);
 john.right(90);
 john.forward(20);
 john.left(90);
 }
}

// LEARN03A.CPP

13

#define OBJECT_TURTLE
#include <champ.h>

void gmain ()
{
 CPWindow grass("Grass");
 CPWindow forest("Forest");

 Turtle::speed(100);
 Turtle john;
 Turtle laura;
 john.setPos(forest, 0, 0);
 laura.setPos(grass, 0, 0);

 repeat (20)
 {
 john.forward(10);
 john.right(90);
 john.forward(10);
 john.left(90);
 laura.forward(10);
 laura.right(18);
 }
 getch();
}

// LEARN03B.CPP

#define OBJECT_TURTLE
#include <champ.h>

void gmain ()
{
 CPFrame playLand;
 CPWindow gras("Gras");
 CPWindow forest("Forest");

 Turtle::speed(100);
 Turtle john;
 Turtle laura;
 john.setPos(forest, 0, 0);
 laura.setPos(gras, 0, 0);

 repeat (20)
 {
 john.forward(10);
 john.right(90);
 john.forward(10);
 john.left(90);

 laura.forward(10);
 laura.right(18);
 }
 getch();
}

14

Step 4: Repeat structure "while"

Aim: Geting to know the "while" loop.

Procedure: Draw a stair with 5 steps with a step counter.

Remarks: Introduction of an integer variable i. Instead of instantiation, this process
is also called "variable definition with initialization".

The loop's condition can be at the beginning or at the end of the body:
while loop: condition at the beginning (test before the body)
repeat loop: condition at the end (test after the body)

Do-loop While-loop

Body

Condition
true

false

Body

true

Condition

// LEARN04.CPP

#define OBJECT_TURTLE
#include <champ.h>

void gmain ()
{
 ginit("Learn04");
 Turtle john;
 int i = 0;
 while (i < 5)
 {
 john.forward(20);
 john.right(90);
 john.forward(20);
 john.left(90);
 i = i + 1;
 }
 getch();

15

}

Step 5: Repeat structure "do"

Aim: Getting to know the "do-while" loop.

Procedure: Draw a stair with 5 steps, doing the test after the body.

Remarks: This is a condition for the execution of the body, not a break condition.

// LEARN05.CPP

#define OBJECT_TURTLE
#include <champ.h>

void gmain ()
{
 ginit("Learn05");

 Turtle john;
 john.speed(40);

 int i = 0;
 do
 {
 john.forward(20);
 john.right(90);
 john.forward(20);
 john.left(90);
 i = i + 1;
 } while (i < 5);

 getch();
 gend();
}

Step 6: Repeat structure "for"

Aim: Getting to know the "for" loop.

Procedure: The automatic loop counter simplifies notation.

Remarks: Basically this is a "while" loop. Please note that the condition is the
running and not the break condition as is customary in other programming
languages.

for (statement1; condition; statement2)

16

Body

Condition

true

false

Statement 1

Statement 1

// LEARN06.CPP

#define OBJECT_TURTLE
#include <champ.h>

void gmain ()
{
 ginit("Learn06");

 Turtle john;
 john.speed(40);

 for (int i = 0; i < 5; i++)
 {
 john.forward(20);
 john.right(90);
 john.forward(20);
 john.left(90);
 }

 getch();
 gend();
}

17

Step 7: "if-else" selection

Aim: Getting to know "if-else" selection.

Procedure: Draw a left or a right stair with a query.

Remarks: This is a "twofold selection". (Single selections don't have the "else" part.)
Here, too, flow charts may be used for further illustration.

Note the difference between the assignment with = and the condition for
equality with ==, a somewhat uncustomary form of notation. However, the
C++ compiler provides simple equality marks with warnings (if all
warnings are switched on, the way they should be, and no special bracket
techniques are used).

Text is displayed in a console window through the object cout (can be
understood as an object, namely the text screen). Here, a message is sent
with the operator <<. (An "include" of the file "iostream.h" has to be
made.)

The reading of a key is generally done with the object cin (can be
understood as an object, namely the keyboard). The character typed is
assigned to the variable "answer" with the operator >>. In real Windows
programs it is customary not to use console windows. In this case, a text
is read through an input dialog. In order to use cin, the console window
must be initalized and displayed using cinit.

Because they make programs confusing, deeply nested "if-else"
structures are to be avoided.

Condition

Statement 2Statement 1

falsetrue falsetrue
Condition

Statement

Supplements: Validating the input, use of the operators &&, ¦¦, !

// LEARN07.CPP

#define OBJECT_TURTLE
#include <champ.h>

18

#include <iostream.h>
#include <conio.h>

void gmain ()
{
 ginit("Learn07");
 cinit("Learn07", 10, 40);

 Turtle john;
 char answer;
 int i;

 cout << "Left or right (l,r)? ";
 cin >> answer;

 if (answer == 'l')
 {
 for (i = 0; i < 5; i++)
 {
 john.forward(20);
 john.left(90);
 john.forward(20);
 john.right(90);
 }
 }
 else
 {
 for (i = 0; i < 5; i++)
 {
 john.forward(20);
 john.right(90);
 john.forward(20);
 john.left(90);
 }
 }

 getch();
 gend();
 cend();
}

Step 8: Multiple selection "switch"

Aim: Getting to know the multiple selection "switch".

Procedure: Draw a left or a right stair with a query, using the "switch" structure.

Remarks: After testing the condition, the program branches off to the corresponding
place in the "switch" body (as if there were a jump to a label). From here,
the program is executed to the end of the body, or to the next break
instruction. A break instruction causes the rest of the body to be skipped.

The default section is optional. It is jumped to when none of the conditions
are fulfilled.

19

A uniform technique of inserting blocks is to be applied, and the body
should be well structured. If the same body section is to be executed on
different conditions, several "case"s have to be written, one below the
other.

To give a better, “look and feel“, input via the console window is replaced
by an input box. Champ provides predefined (template-) classes for the
standard data types. To display the box, use the member function
showModal.

Supplements: Repeat the input after a wrong answer.

// LEARN08.CPP

#define OBJECT_TURTLE
#include <champ.h>

void gmain ()
{
 ginit("Learn08");

 Turtle john;
 int i;
 char answer = 'r';

 CPInputChar("Select stair", "Left or right?",
 answer, 'r').showModal();

 switch (answer)
 {
 case 'l':
 case 'L':
 for (i = 0; i < 5; i++)
 {
 john.forward(20);
 john.left(90);
 john.forward(20);
 john.right(90);
 }
 break;

 case 'r':
 case 'R':
 for (i = 0; i < 5; i++)
 {
 john.forward(20);
 john.right(90);
 john.forward(20);
 john.left(90);
 }
 break;

 default:
 CP::msgBox("Report", MB_OK,
 "Illegal entry");
 }
 getch();
 gend();

20

}

// LEARN08A.CPP

#define OBJECT_TURTLE
#include <champ.h>
#include <iostream.h>

void gmain ()
{
 ginit("Learn08a");

 Turtle john;
 int i;
 char answer = 'r';
 bool isIllegal = true;

 while (isIllegal)
 {
 CPInputChar("Select stair", "Left or right?",
 answer, 'r').showModal();
 switch (answer)
 {
 case 'l':
 case 'L':
 for (i = 0; i < 5; i++)
 {
 john.forward(20);
 john.left(90);
 john.forward(20);
 john.right(90);
 isIllegal = false;
 }
 break;

 case 'r':
 case 'R':
 for (i = 0; i < 5; i++)
 {
 john.forward(20);
 john.right(90);
 john.forward(20);
 john.left(90);
 isIllegal = false;
 }
 break;

 default:
 CP::msgBox("Report", MB_OK,
 "Illegal entry");
 }
 }
 getch();
 gend();
}

21

Step 9: Functions

Aim: Realizing that it is necessary to do modular programming (user defined
functions).

Procedure: Self-contained program sections, called functions, are given a name of
their own. Define leftStair and rightStair to draw the stair.

Remarks: The object "john" is instantiated (locally) within the function, which means
that it exists only within the function, i.e. at the end of the function call it is
destroyed.

Function declaration (also called function prototype), function definition
and function call are to be clearly distinguished. Therefore we put an extra
space between the name and the parameter parenthesis in the function
declaration and definition.

Capitalization in names of functions should be consistent. Underscores
are only used in special cases. Double underscores should be avoided
because they are reserve for internal compiler use.

It is usual to omit the parameter type "void".

Function definitions can only take place on the outmost level (not inside
functions).

Supplements: Let the function return the length of distance covered, and the main
program print it out.

Remarks: Returning a value is done with return. With the execution of return, the
function is broken off, and the value evaluated in the return statement is
given back to the caller. A function is allowed to have more than one
return, but this should be used with care because it makes programs
confusing.

// LEARN09.CPP

#define OBJECT_TURTLE
#include <champ.h>

void leftStair ();
void rightStair ();

void gmain ()
{
 ginit("Learn09");
 char answer = 'r';

 CPInputChar("Select stair", "Left or right?",
 answer, 'r').showModal();

22

 if (answer == 'l')
 leftStair();
 else
 rightStair();

 getch();
 gend();
}

void leftStair ()
{
 Turtle john;
 for (int i = 0; i < 5; i++)
 {
 john.forward(20);
 john.left(90);
 john.forward(20);
 john.right(90);
 }
}

void rightStair ()
{
 Turtle john;
 for (int i = 0; i < 5; i++)
 {
 john.forward(20);
 john.right(90);
 john.forward(20);
 john.left(90);
 }
}

// LEARN09A.CPP

#define OBJECT_TURTLE
#include <champ.h>

float leftStair ();
float rightStair ();

void gmain ()
{
 float length;

 ginit("Learn09a");
 cinit("Learn09a", 10, 40, CPPosition(300, 200));
 char answer = 'r';

 CPInputChar("Select stair", "Left or right?",
 answer, 'r').showModal();

 if (answer == 'l')
 length = leftStair();
 else
 length = rightStair();

 cactivate();

23

 cout << "Length of turtle's path: " << length;
 getch();
 cend();
 gend();
}

float leftStair ()
{
 Turtle john;
 float pathLength = 0;

 for (int i = 0; i < 5; i++)
 {
 john.forward(20);
 pathLength += 20;
 john.left(90);
 john.forward(20);
 pathLength += 20;
 john.right(90);
 }
 return pathLength;
}

float rightStair ()
{
 Turtle john;
 float pathLength = 0;

 for (int i = 0; i < 5; i++)
 {
 john.forward(20);
 pathLength += 20;
 john.right(90);
 john.forward(20);
 pathLength += 20;
 john.left(90);
 }
 return pathLength;
}

Step 10: Function parameters

Aim: Getting to know function parameters.

Procedure: The program becomes simpler and clearer, if it is possible to pass
information of the kind of the stair when calling the function.

Remarks: Formal parameters (in function definitions and function declarations)
should be distinguished from actual parameters (in function calls,
sometimes called “arguments“).

The lists of parameters in the function definition and in the function
declaration should be identical.

Function parameters are "calls-by-value", i.e. in the call, only the value of
the parameter is passed to the function. (Actually, the value is copied to a

24

local temporary variable.)

Constant characters must be put between single quotation marks.

Objects (variables) instantiated in gmain are local to gmain and therefore
"invisible" in other functions.

// LEARN10.CPP

#define OBJECT_TURTLE
#include <champ.h>

void stair (char direction);

void gmain ()
{
 ginit("Learn10");
 char answer = 'r';
 CPInputChar("Select stair", "Left or right?",
 answer, 'r').showModal();
 stair(answer);
 getch();
 gend();
}

void stair (char direction)
{
 Turtle john;
 for (int i = 0; i < 5; i++)
 {
 john.forward(20);

 if (direction == 'l')
 john.left(90);
 else
 john.right(90);

 john.forward(20);

 if (direction == 'l')
 john.right(90);
 else
 john.left(90);
 }
}

Step 11: Global variables

Aim: Avoiding global variables.

Procedure: Instead of passing variables to the functions, it is also possible to use
global variables. Introduce a global variable instead of a call-by-value and
arbitrarily cause a side effect.

25

Remarks: As a rule, global variables are but an apparent simplification. In fact, they
are a source of numerous errors, since any section of the program can
change them.

Supplement: Introduce a global and a local variable "answer" and explain the
program's faulty behavior.

// LEARN11.CPP

#define OBJECT_TURTLE
#include <champ.h>

char answer = 'r'; // Global variable

void stair ();
void sideeffect ();

void gmain ()
{
 ginit("Learn11");
 CPInputChar("Select stair", "Left or right?",
 answer, 'r').showModal();
 stair();
 sideeffect();
 stair();
 getch();
 gend();
}

void stair ()
{
 Turtle john;
 for (int i = 0; i < 5; i++)
 {
 john.forward(20);

 if (answer == 'l')
 john.left(90);
 else
 john.right(90);

 john.forward(20);

 if (answer == 'l')
 john.right(90);
 else
 john.left(90);
 }
}

void sideeffect()
{
 answer = 'r';
}

// LEARN11A.CPP

#define OBJECT_TURTLE

26

#include <champ.h>

char answer = 'r'; // Global variable

void stair ();
void sideeffect ();

void gmain ()
{
 ginit("Learn11a");

 char answer = 'l';
 // Local variable with same name as global

 CPInputChar("Select stair", "Left or right?",
 answer, 'l').showModal();
 stair();
 sideeffect();
 stair();
 getch();
 gend();
}

void stair ()
{
 Turtle john;
 for (int i = 0; i < 5; i++)
 {
 john.forward(20);

 if (answer == 'l')
 john.left(90);
 else
 john.right(90);

 john.forward(20);

 if (answer == 'l')
 john.right(90);
 else
 john.left(90);
 }
}

void sideeffect ()
{
 answer = 'r';
}

Step 12: References

Aim: Getting to know references.

Procedure: Use a reference parameter instead of a call-by-value.

Remarks: In references, the function is passed the "location" of the variable (its
address). Thus, the function can change its value.

27

Copying variables in a call-by-value always means a loss of time and
storage space. In addition to that, for some objects the copying operation
is not even defined, so that references are the only possible way to pass
the objects to the function.

If the reference variable is not changed in the function, it should be
passed to the function in the form of a constant variable (for reasons of
protection from side effects).

Supplement: If you pass a turtle “by value“, a temporary copy of the turtle is made (in a
storage region called “stack“). Show that this will cause a faulty program
because the temporary and not the original turtle is moved.

// LEARN12.CPP

#define OBJECT_TURTLE
#include <champ.h>

void stair (Turtle & aTurtle, char direction);

void gmain ()
{
 ginit("Learn12");
 Turtle john;
 char answer = 'r';
 CPInputChar("Select stair", "Left or right?",
 answer, 'r')
 .showModal(CPPosition(200, 200));
 stair(john, answer);
 getch();
 gend();
}

void stair (Turtle & aTurtle, char direction)
{
 for (int i = 0; i < 5; i++)
 {
 aTurtle.forward(20);

 if (direction == 'l')
 aTurtle.left(90);
 else
 aTurtle.right(90);

 aTurtle.forward(20);

 if (direction == 'l')
 aTurtle.right(90);
 else
 aTurtle.left(90);
 }
}

// LEARN12A.CPP

28

#define OBJECT_TURTLE
#include <champ.h>

void stair (Turtle aTurtle, char direction);

void gmain ()
{
 ginit("Learn12a");
 Turtle john;
 char answer = 'r';
 CPInputChar("Select stair", "Left or right?",
 answer, 'r')
 .showModal(CPPosition(200, 200));
 stair(john, answer);
 getch();
 john.forward(100);
 getch();
 gend();
}

void stair (Turtle aTurtle, char direction)
{
 for (int i = 0; i < 5; i++)
 {
 aTurtle.forward(20);

 if (direction == 'l')
 aTurtle.left(90);
 else
 aTurtle.right(90);

 aTurtle.forward(20);

 if (direction == 'l')
 aTurtle.right(90);
 else
 aTurtle.left(90);
 }
 getch();
}

Step 13: Arrays

Aim: Getting to know arrays.

Procedure: Define a turtle family as an array and move the different family members
in different directions.

Remarks: The number of array elements is defined in the variable definition of the
array.

The array elements are referred to through their index. Unfortunately the
index can only assume integer values starting from 0.

An array index overflow is not tested for. Errors usually cause a break
during the execution time of the program, possibly even a system crash.

29

// LEARN13.CPP

#define OBJECT_TURTLE
#include <champ.h>

void gmain ()
{
 ginit("Turtle14");

 Turtle family[4];

 family[0].forward(50);
 family[1].left(90);
 family[1].forward(50);
 family[2].left(180);
 family[2].forward(50);
 family[3].left(270);
 family[3].forward(50);

 getch();
 gend();
}

Step 14: Strings

Aim: Getting to know strings as arrays.

Procedure: Introduce a family name for the turtle family and first names for its
different members.

Remarks: The string is defined as a character array. The ASCII code of the
characters is saved in consecutive memory field that must always be
terminated with the zero byte (called “null character“).

Most string functions automatically process the terminating null character.
However, it must be made sure that there is enough space for it, i.e. a
string of the length n has to have room for n+1 bytes.

Constant strings are put between double quotation marks. The terminating
character is automatically included.

A string cannot be filled with several characters through an assignment.
Instead, the string function strcpy is used.

Arrays of strings are implemented as arrays with a double index.

Supplements: Fill the strings through initialization.

// LEARN14.CPP

#define OBJECT_TURTLE
#include <champ.h>
#include <iostream.h>

30

#include <string.h>
#include <conio.h>

void gmain ()
{
 ginit("Learn14");
 cinit("Learn14", 10, 40, CPPosition(250, 200));

 Turtle family[4];
 char familyName[10];
 char firstName[4][10];

 strcpy(familyName, "Smith");
 strcpy(firstName[0], "Dad");
 strcpy(firstName[1], "Mam");
 strcpy(firstName[2], "Jack");
 strcpy(firstName[3], "Su");

 for (int i = 0; i < 4; i++)
 {
 cout << firstName[i] << " " << familyName
 << " moving now..." << endl;
 family[i].left(90*i);
 family[i].forward(50);
 getch();
 }
 cend();
 gend();
}

// LEARN14A.CPP

#define OBJECT_TURTLE
#include <champ.h>
#include <iostream.h>
#include <conio.h>

void gmain ()
{
 ginit("Learn14a");
 cinit("Learn14a", 10, 40, CPPosition(250, 200));

 Turtle family[4];
 char familyName[] = "Smith";
 char firstName[][10] = { "Dad", "Mam",
 "Jack", "Su" };

 for (int i = 0; i < 4; i++)
 {
 cout << firstName[i] << " " << familyName
 << "moving now... " << endl;
 family[i].left(90*i);
 family[i].forward(50);
 getch();
 }
 cend();
 gend();
}

31

Step 15: Pointers

Aim: Getting to know pointers.

Procedure: Move a turtle which is referred to as a pointer.

Remarks: Pointers (pointer variables) are important particularly in connection with
dynamic data structures, i.e. if an object is created only during execution
time and the storage space is to be released again later. (Storage space
for a dynamic object is allocated on the so-called "heap" with the operator
"new" and freed with the operator "delete".)

The object to which the pointer points is referred to through the
dereferencation of the pointer (with the star operator).

A pointer's value does not make sense when being defined without
initialization. Prior to its first dereferencation, the pointer must be given a
meaningful value, either through an initialization or an assignment. If this
is not done, runtime errors might cause the computer to crash.

An object referred to with a pointer should be destroyed when not used
any longer (in order to release storage space). When the pointer is given
a new value without the object having been destroyed beforehand, a "data
corpse" is left behind and wastes storage space. (C++ does not have
automatic "garbage collection").

Supplements: Use the arrow operator to access member functions and data elements of
an object referred to through a pointer.

// LEARN15.CPP

#define OBJECT_TURTLE
#include <champ.h>

void gmain ()
{
 ginit("Learn15");

 Turtle * pLaura;
 pLaura = new Turtle; // Or simply: Turtle * pLaura
= new Turtle;

 (*pLaura).speed(40);
 (*pLaura).forward(100);
 (*pLaura).stampTurtle();
 (*pLaura).right(90);
 (*pLaura).forward(100);
 getch();
 delete pLaura;
 getch();
 gend();
}

32

// LEARN15A.CPP

#define OBJECT_TURTLE
#include <champ.h>

void gmain ()
{
 ginit("Learn15a");

 Turtle * pLaura;
 pLaura = new Turtle;

 pLaura->speed(40);
 pLaura->forward(100);
 pLaura->stampTurtle();
 pLaura->right(90);
 pLaura->forward(100);
 getch();
 delete pLaura;
 getch();
 gend();
}

Step 16: Menus

Aim: Getting to know an event driven program with a menu.

Procedure: Write a program that has a menu with two entries "go" and "exit". When
the mouse is clicked on "go", the turtle starts moving endlessly in a circle
until the program is terminated by a mouseclick on "exit".

Remarks: The menu is designed using the Resource Workshop. The workshop
creates a resource file LEARN16.RC that must be included in the project.

Menu items that were defined with the Resource Workshop are selected
by the program using an "identificaton", i.e. a integer number. A symbol
for this number is defined in the include file LEARN16.RH that is
accessible for both the Resource Workshop and to the source program.

The menu is instantiated as an object of the class CPMenu. The menu
name given by the resource editor must be identical to that stated in the
instantiation. The menu options have corresponding global functions that
are registered with registerMenuItem. Every time the item is clicked, the
corresponding function is called ("callback" function).

In order to assign the menu to a window, a reference to the menu object is
passed when the window is instatiated.

The main program executes an endless loop,where the value of program
„state“ is tested. When the system is in the „stopped“ state, the function
CP::yield must be called in order to force the system to serve any
Windows events (the operation system is not preemtive but cooperative).

33

Supplements: Rewrite the same program using the addMenuItem and addSubMenu
functions to create a menu without using the Resource Workshop.

// LEARN16.CPP

#define OBJECT_TURTLE
#include <champ.h>
#include "learn16.rh"

void do_go ();
void do_stop ();
void do_exit ();

enum { stopped, running, aborting } state = stopped;

void gmain ()
{
 CPMenu myMenu("Learn16_Menu");
 myMenu.registerMenuItem(IDM_GO, do_go);
 myMenu.registerMenuItem(IDM_STOP, do_stop);
 myMenu.registerMenuItem(IDM_EXIT, do_exit);

 ginit("Learn16", myMenu);
 Turtle john;
 john.speed(40);

 do {
 switch (state)
 {
 case stopped:
 CP::yield();
 break;

 case running:
 john.forward(10).left(10);
 break;
 }
 } while (state != aborting);

 gend();
}

void do_go ()
{
 state = running;
}

void do_stop ()
{
 state = stopped;
}

void do_exit ()
{
 state = aborting;
}}

34

// LEARN16A.CPP

#define OBJECT_TURTLE
#include <champ.h>

enum { stopped, running, aborting } state = stopped;

void do_go ();
void do_stop ();
void do_exit ();
void redColor ();
void greenColor ();
void yellowPenColor ();
void cyanPenColor ();

Turtle john;

void gmain ()
{
 CPMenu myMenu;
 myMenu.addMenuItem("&Go", do_go);
 myMenu.addMenuItem("&Stop", do_stop);
 myMenu.addSeparator();
 myMenu.addMenuItem("&Exit", do_exit);

 CPSubMenu optionMenu =
 myMenu.addSubMenu("Options");

 CPSubMenu colorMenu =
 optionMenu.addSubMenu("Turtle Color");
 colorMenu.addMenuItem("Green", greenColor);
 colorMenu.addMenuItem("Red", redColor);

 CPSubMenu penMenu =
 optionMenu.addSubMenu("Pen Color");
 penMenu.addMenuItem("Yellow", yellowPenColor);
 penMenu.addMenuItem("Cyan", cyanPenColor);

 CPWindow wnd("Learn16a", myMenu);
 john.speed(40);
 john.setPos(wnd, 0, 0);

 do {
 switch (state)
 {
 case stopped:
 CP::yield();
 break;

 case running:
 john.forward(10).left(10);
 break;
 }
 } while (state != aborting);

 gend();
}

void do_go ()
{

35

 state = running;
}

void do_stop ()
{
 state = stopped;
}

void do_exit ()
{
 state = aborting;
}

void redColor ()
{
 john.turtleColor(RED);
}

void greenColor ()
{
 john.turtleColor(GREEN);
}

void yellowPenColor ()
{
 john.penColor(YELLOW);
}

void cyanPenColor ()
{
 john.penColor(CYAN);
}

Step 17: Modeless dialogs

Aim: Getting to know modeless dialog boxes.

Procedure: Write a program with a "buttonbar" that should contain the buttons "go",
"stop", "cont", and "exit". When "go" is clicked, the turtle starts moving in a
circle, until "stop" or "exit" is clicked. "cont" lets the turtle continue the
circular motion that was stopped with "stop".

Remarks: Modeless dialogs are displayed on the screen with showModeless. Since
the function returns afterwards, events are processed exclusively with
callback functions. With close, an open dialog can be closed.

The button bar is designed as a dialog containing buttons with the
Resource Workshop. The workshop creates a file LEANR17.RC, which
must be included in the project.

The link between the buttons created with the Resource Workshop and
the source program is established by means of an "identification", i.e. a
symbolic integer defined in LEARN17.RH.

The dialog is instantiated as an object of the class CPModelessDialog.

36

The dialog's name given by the resource editor must be identical with the
name registered in the instantiation. The buttons are objects of the class
CPButton and have a corresponding global function registered in the
instantiation of the button object. Every time a button is clicked, the
corresponding callback function is called.

When the member function showModeless() is called, the dialog is
displayed on the screen. If a (reference or pointer of a) Champ window is
passed as a parameter, then this window becomes the "owner" of the
dialog. The constant CP::upperLeft "attachs" the dialog to the upper left
edge of the window, so that the dialog moves together with the graphics
window when it is moved on the screen.

In an endless loop, the main program moves the turtle. After "stop", the
program must call CP::yield in order for window events still to be
processed.

// LEARN17.CPP

#define OBJECT_TURTLE
#include <champ.h>
#include "learn17.rh"

enum { stopped, running, aborting } state = stopped;

void do_go ();
void do_stop ();
void do_exit ();

void gmain()
{
 CPWindow wnd("Learn17");
 wnd.clear(LIGHTGREEN);

 CPModelessDialog btnBar("ButtonBar");
 CPButton goButton(btnBar, IDB_GO, do_go);
 CPButton stopButton(btnBar, IDB_STOP, do_stop);
 CPButton exitButton(btnBar, IDB_EXIT, do_exit);

 btnBar.showModeless(wnd, CP::upperLeft);

 Turtle john;
 john.speed(40);
 john.setPos(wnd, 0, 0);

 do
 switch (state)
 {
 case stopped:
 CP::yield();
 break;

 case running:
 john.forward(10).left(10);
 break;
 }
 while (state != aborting);

37

}

void do_go ()
{
 state = running;
}

void do_stop ()
{
 state = stopped;
}

void do_exit ()
{
 state = aborting;
}

Step 18: Modal dialogs, radio buttons

Aim: Getting to know modal dialog windows.

Procedure: Write a program that opens a modal dialog with 3 radio buttons when
started. When the user has selected either "triangle" or "square" or "star",
the corresponding shape is drawn.

Remarks: In contrast to modeless dialogs, showModal displays the box on screen,
but the function does not return until the dialog is closed. If the dialog
contains an OK button or a Cancel button with the IDs IDOK resp.
IDCANCEL, the dialog is closed by a click on either of them. The function
returns the ID of the button clicked. Afterwards, it is possible to check
which radio button was clicked by calling isChecked.

The dialog is created with the Resource Workshop. Since the buttons are
radio buttons (e.g. exactly one button is checked), they should be inserted
in a groupbox.

The dialog is instantiated as an object of the class CPModalDialog. The
dialog's name given by the resource editor must be identical with the one
stated in the instantiation. The radio buttons are objects of the class
CPRadioButton.

Supplements: Write a program with check buttons. All selected shapes are drawn.

// LEARN18.CPP

#define OBJECT_TURTLE
#include <champ.h>
#include "learn18.rh"

void drawTriangle ();
void drawSquare ();
void drawStar ();

void gmain ()

38

{
 ginit("Learn18");
 gclear(LIGHTGREEN);

 CPModalDialog myDialog("RadioBox");
 CPRadioButton but1(myDialog, IDC1, IDC1, IDC3);
 CPRadioButton but2(myDialog, IDC2, IDC1, IDC3);
 CPRadioButton but3(myDialog, IDC3, IDC1, IDC3);

 if (myDialog.showModal() == IDOK)
 if (but1.isChecked())
 drawTriangle();
 else
 if (but2.isChecked())
 drawSquare();
 else
 if (but3.isChecked())
 drawStar();

 getch();
 gend();
}

void drawTriangle ()
{
 Turtle john;
 repeat(3)
 john.forward(100).left(120);
}

void drawSquare ()
{
 Turtle john;
 repeat(4)
 john.forward(100).left(90);
}

void drawStar ()
{
 Turtle john;
 repeat(12)
 john.forward(100).left(150);
}

// LEARN18A.CPP

#define OBJECT_TURTLE
#include <champ.h>
#include "learn18a.rh"

void drawTriangle ();
void drawSquare ();
void drawStar ();

void gmain ()
{
 ginit("Learn18a");
 gclear(LIGHTGREEN);

39

 CPModalDialog myDialog("CheckBox");
 CPCheckButton but1(myDialog, IDC1);
 CPCheckButton but2(myDialog, IDC2);
 CPCheckButton but3(myDialog, IDC3);

 if (myDialog.showModal() == IDOK)
 {
 if (but1.isChecked())
 drawTriangle();
 if (but2.isChecked())
 drawSquare();
 if (but3.isChecked())
 drawStar();
 }
 getch();
 gend();
}

void drawTriangle ()
{
 Turtle john;
 repeat(3)
 john.forward(100).left(120);
}

void drawSquare ()
{
 Turtle john;
 repeat(4)
 john.forward(100).left(90);
}

void drawStar ()
{
 Turtle john;
 repeat(12)
 john.forward(100).left(150);
}

Step 19: Scrollbars

Aim: Getting to know scrollbars.

Procedure: Write a program that creates a CPWindow with a horizontal and a vertical
scrollbar with which the position of the turtle can be adjusted.

Remarks: Scrollbars belonging to a CPWindow are instances of the classes
CPHorzScrollbar resp. CPVertScrollbar. They are automatically created by
calling addHorzScrollbar resp. addVertScrollbar. They take the name of a
callback function that is automatically called when the scrollbar’s thumb
changes its position.

In order to add the scrollbars before the window is displayed, insert the
following line before including champ.h

#define CP_INVISIBLE_WINDOWS

40

By default, the callback function is called once, when the thumb reaches
its final position. setTrack(true) causes the callback function to be
invoked whenever the the thumb reaches a new position value. This may
cause problems if the callback function does not return fast enough.

Supplements: Write a program with a scrollbar in a modeless dialog window. The turtle
should continually move in a circle. Its velocity should be adjustable by
means of the scrollbar.

// LEARN19.CPP

#define CP_INVISIBLE_WINDOWS
#define OBJECT_TURTLE
#include <champ.h>

void horzProc (int pos);
void vertProc (int pos);

Turtle john;
int horzPos = 0;
int vertPos = 0;

void gmain ()
{
 CPWindow wnd("Learn19");

 wnd.addHorzScrollbar(horzProc);
 wnd.horzScrollbar().setRange(-150, 150, 1, 10);
 wnd.horzScrollbar().setPosition(0);
 wnd.horzScrollbar().setTrack(true);
 wnd.addVertScrollbar(vertProc);
 wnd.vertScrollbar().setRange(-150, 150, 1, 10);
 wnd.vertScrollbar().setPosition(0);
 wnd.vertScrollbar().setTrack(true);

 wnd.show(); // Display window with scrollbars

 john.setPos(wnd, 0, 0);
 getch();
}

void horzProc (int pos)
{
 if (horzPos < pos)
 john.setHeading(90);
 else
 if (horzPos > pos)
 john.setHeading(270);

 john.setPos(pos, -vertPos);
 horzPos = pos;
}

void vertProc (int pos)
{
 if (vertPos < pos)
 john.setHeading(180);

41

 else
 if (vertPos > pos)
 john.setHeading(0);

 john.setPos(horzPos, -pos);
 vertPos = pos;
}

// LEARN19A.CPP

#define OBJECT_TURTLE
#include <champ.h>
#include "learn19a.rh"

void scrollbarProc(int pos);
Turtle john(RED);

void gmain ()
{
 CPWindow wnd("Learn19a");
 wnd.clear(LIGHTGREEN);

 CPModelessDialog myDialog("ScrollBox");
 CPScrollbar myBar(myDialog, IDC_BAR, scrollbarProc
);
 myBar.setRange(1, 500);
 myBar.setPosition(250);
 myDialog.showModeless(wnd, CP::lowerLeft);

 john.setPos(wnd, 0, 0);
 john.speed(250);

 while (!CP::kbhit())
 {
 john.forward(10);
 john.left(10);
 }
}

void scrollbarProc (int pos)
{
 john.speed(pos);
}

Step 20: Keyboard events

Aim: Learning how keyboard events are used.

Procedure: Write a program to move a turtle with the cursor keys.

Remarks: Keyboard events can be evaluated through an object of the class
CPKeyboard. Using attach, the keyboard object “belongs“ to the
corresponding window, e.g. the function passed to registerCallback is
called if the window has the focus and a key is pressed.

42

The parameter values passed to the callback functions may be used to
determine the kind of event occured.

// LEARN20.CPP

#define OBJECT_TURTLE
#include <champ.h>
#include <cpkbd.h>

#define CURSORLEFT 37
#define CURSORUP 38
#define CURSORRIGHT 39
#define CURSORDOWN 40
#define ESCAPE 27

void kbdProc (CPKeyboard::Event event,
 unsigned keycode);

CPTurtle john(RED);

void gmain ()
{
 CPWindow wnd("Learn20");
 CPKeyboard kbd;
 kbd.registerCallback(kbdProc);
 wnd.attach(kbd);
 john.setPos(wnd, 0, 0);

 wnd.pos(20, 0);
 wnd.text("Press cursor keys to move");
 wnd.pos(20, -20);
 wnd.text("or <Esc> to quit");

 CP::run();
}

void kbdProc (CPKeyboard::Event event,
 unsigned keycode)
{
 if (event == CPKeyboard::keyDown)
 {
 switch (keycode)
 {
 case CURSORLEFT:
 john.setHeading(270);
 break;

 case CURSORRIGHT:
 john.setHeading(90);
 break;

 case CURSORUP:
 john.setHeading(0);
 break;

 case CURSORDOWN:
 john.setHeading(180);
 break;

43

 case ESCAPE:
 CP::quit();
 break;
 }
 john.forward(5);
 }
}

Step 21: Mouse events

Aim: Learning how mouse events are used.

Procedure: Write a program that causes a new member of a turtle family (maximum of
six members) to be produced when the mouse is double-clicked (left
button) on the cursor position. Further, the program should enable you to
"catch" a turtle by clicking the left mouse button near it, and then to move
it by dragging it with the mouse (during which the cursor shape should
change to a cross).

Remarks: To use the mouse in a given window, the constructor of CPMouse takes
(a reference to) the window. An OR-mask given to registerEvent lets you
enable the particular events that calls the given callback function. For
efficency reasons only a minimum number of events should be enabled.

The callback function receives a reference to the mouse instance to let
you retrieve the information on which event happend.

In order for mouse events outside the active window to be registered as
well, the mouse must be "caught" with

setCapture();

In order for the mouse to be at the disposal of other programs again,
particularly the Windows environment,

releaseCapture();

must be called.

When the turtles are global instances, Champ uses setPos to set the
turtle coordinate system. Because the mouse coordinates are retrieved
before calling setPos, the coordinate system must be set explicitly at the
beginning of the program.

Supplements: Write a program for drawing a line with the left mouse button (clicking and
pulling produces a rubber band line).

Remarks: While pulling the rubber band line, the drawing mode XOR must be used
with

setRop2(R2_XORPEN);

44

Further, the pen color must be adapted to the background color using the
XOR operator. When the mouse button is released, the line is drawn with

setRop2(R2_COPYPEN);

in order to avoid holes where the line crosses other lines.

// LEARN21.CPP

#define OBJECT_TURTLE
#include <champ.h>

#define FAMILYSIZE 6

void mouseProc (CPMouse & aMouse);
Turtle family[FAMILYSIZE];

void gmain ()
{
 CPWindow wnd("Learn21");
// Because turtles are global (setPos comes too late)
 wnd.window(-200, 200, -200, 200);
 CPMouse micky(wnd);
 micky.registerEvents(CPMouse::lPress |
 CPMouse::lRelease |
 CPMouse::lDClick |
 CPMouse::rDClick |
 CPMouse::move,
 mouseProc);
 wnd.pos(-100, 100);
 wnd.text("Right mouse double click to quit");
 CP::run();
}

void mouseProc (CPMouse & aMouse)
{
 static int member = 0;
 static int caughtMember = -1; // No turtle caught
 const float xRegion = 10;
 const float yRegion = 10;
 int i;

 switch (aMouse.event())
 {
 case CPMouse::lPress:
 // Called also once when clicked
 // or once(!) when doubleclicked
 for (i = 0; i < member; i++)
 {
 if (fabs(aMouse.userX() -
 family[i].xCor()) < xRegion &&
 (fabs(aMouse.userY() -
 family[i].yCor()) < yRegion))
 {
 caughtMember = i;
 aMouse.setCapture(aMouse.window());
 // In order to get a lRelease event when
 // released outside the turtle window

45

 aMouse.setCursor(IDC_CROSS);
 break;
 }
 }
 break;

 case CPMouse::lRelease:
 // Called also once when clicked
 // or twice when doubleclicked
 if (caughtMember != -1)
 {
 caughtMember = -1; // No turtle caught
 aMouse.releaseCapture();
 // Mandatory
 aMouse.setCursor(IDC_ARROW); //
 }
 break;

 case CPMouse::lDClick:
 if (member < FAMILYSIZE)
 {
 family[member].turtleColor(member+1);
 family[member].setPos(aMouse.window(),
 aMouse.userX(), aMouse.userY());
 member++;
 if (member == FAMILYSIZE) {
 aMouse.window().pos(aMouse.userX()+20,
 aMouse.userY());
 aMouse.window()
 .text("Last member of family");
 }
 }
 break;

 case CPMouse::move:
 if (caughtMember != -1)
 // A turtle is caught
 family[caughtMember]
 .setPos(aMouse.userX(),
 aMouse.userY());
 break;

 case CPMouse::rDClick:
 CP::quit();
 break;
 }
}

// LEARN21A.CPP

#include <champ.h>
#define PENCOLOR WHITE
#define BACKGROUND LIGHTBLUE
#define XORCOLOR PENCOLOR ^ BACKGROUND

void drawLine (CPMouse& aMouse);

void gmain ()
{

46

 CPWindow wnd("Learn21a");
 CPMouse mickey(wnd);
 mickey.registerEvents(CPMouse::move |
 CPMouse::lPress |
 CPMouse::lRelease,
 drawLine);
 wnd.clear(BACKGROUND);
 CP::run();
}

void drawLine (CPMouse & aMouse)
{
 static bool isRubberBand = false;
 static float x0, y0, x1, y1;
 CPWindow & wnd = aMouse.window();

 switch (aMouse.event())
 {
 case CPMouse::move:
 if (isRubberBand)
 {
 // Erase old line
 wnd.pos(x0, y0);
 wnd.draw(x1, y1);
 // Draw new line
 x1 = aMouse.userX();
 y1 = aMouse.userY();
 wnd.pos(x0, y0);
 wnd.draw(x1, y1);
 }
 break;

 case CPMouse::lPress:
 wnd.setRop2(R2_XORPEN);
 wnd.penColor(XORCOLOR);
 aMouse.setCapture(wnd);
 isRubberBand = true;
 aMouse.setCursor(IDC_CROSS);
 x0 = x1 = aMouse.userX();
 y0 = y1 = aMouse.userY();
 break;

 case CPMouse::lRelease:
 wnd.setRop2(R2_COPYPEN);
 wnd.penColor(PENCOLOR);
 wnd.pos(x0, y0);
 wnd.draw(x1, y1);
 aMouse.releaseCapture();
 isRubberBand = false;
 aMouse.setCursor(IDC_ARROW);
 break;
 }
}

Step 22: Text windows

Aim: Getting to know formatting text screen output using cout.

47

Procedure: Study the sample program that demonstrates the format possibilites of
cout and some features of cin.

Remarks: Even though "genuine" Windows programs do not use text windows, it can
very well be useful to use them in programming courses, for debugging
purposes or in scientific applications, since they may greatly simplify
programs. The exemplary program shows the main format possibilities.

// LEARN22.CPP

#include <iostream.h>
#include <iomanip.h>
#include <conio.h>
#include <champ.h>

void gmain ()
{
 cinit("Learn22", 20, 80);

 int i, m, n;
 long k;
 char ch;
 float x;
 double y;
 char word[10];

 cout << "Demonstration of some features of cout, "
 "cin stream objects "(this is a long line)";

// extraction operator
 cout << "\n\nEnter integer: ";
// insertion operator
 cin >> i;
// concatenate
 cout << "Got: " << i << " (dec)" << endl;
// octal from now on
 cout << oct << " " << i << " (oct)" << endl;
// hex from now on
 cout << hex << " " << i << " (hex)" << endl;
// uppercase from now on
 cout << setiosflags(ios::uppercase);
// hex in uppercase
 cout << " " << i << " (HEX)" << endl;

 cout << "\n\nEnter long: ";
 cin >> k;
// now decimal again
 cout << dec << "Got: " << k << " (dec)" << endl;
 cout << oct << " " << k << " (oct)" << endl;
 cout << hex << " " << k << " (hex)" << endl;
// reset to decimal
 cout << dec;

 cout << "\nEnter decimal: ";
 cin >> x;
 cout << "Got: " << x << " (normal)" << endl;
// exponential format
 cout << setiosflags(ios::scientific);

48

 cout << "Got: " << x << " (scientific)" << endl;
// fixpoint format
 cout << setiosflags(ios::fixed);
// show decimal point
 cout << setiosflags(ios::showpoint);
// two decimals
 cout << setprecision(2);
 cout << "Got: " << x << " (normal, 2 digits)"
 << endl;
// ten decimals
 cout << setprecision(10);

 cout << "\nEnter double: ";
 cin >> y;
 cout << "Got: " << y << " (normal)" << endl;
 cout << setiosflags(ios::scientific);
 cout << "Got: " << y << " (scientific)" << endl;
 cout << resetiosflags(ios::scientific);

 cout << "\nEnter character: ";
 cin >> ch;
 cout << "Got: " << ch << endl;

 cout << "\nEnter string: ";
// limit to 9 char + '\0'
 cin >> setw(10) >> word;
 cout << "Got: " << word << endl;

 cout << "\nDisplay random integer matrix now..."
 << endl << endl;
 for (m = 0; m < 3; m++)
 {
 for (n = 0; n < 5; n++)
 cout << setw(10) << random(1001);
 cout << endl;
 }

 cout << "\n\nDisplay random float matrix now..."
 << endl << endl;
 cout << setprecision(7);
 for (m = 0; m < 3; m++)
 {
 for (n = 0; n < 5; n++)
 cout << setw(16) << random(1001) / 1000.0;
 cout << endl;
 }

 cout << "\nPress any key...";
 ch = getch();
// unbuffered output on stderr
 cerr << endl << "\nYou entered key: " << ch;

 cout << "\n\nPress any key to quit ";
 getch();
 cend();
}

Step 23: VBX controls

49

Aim: Learning to use pre-defined VBX controls.

Procedure: Write a program that contains two pre-defined switch elements of the size
of 17 x 24 pixels in a dialog of the size of 34 x 24 pixels. As long as one of
them is switched on, the turtle endlessly moves in a circle. When the
second one is switched on, the program is terminated.

Remarks: Microsoft first standardized the use of controls in connection with the
programming language Visual Basic. In order for VBX elements to be
used, the corresponding library files (with the additions .VBX or .DLL)
must be available. The distribution of Borland’s C++ contains the file
SWITCH.VBX that let you include dual position switches very easily.
(Many software companies sell VBX libraries.)

In the Resource Workshop SWITCH.VBX should be added under the
menu option "Install file ¦ library". The switch element is then shown
among the tool icons and can be inserted into a dialog like any other
control.

In the program, VBX elements are treated similarly to other controls. First
an instance of CPVbxControl is created and the file name (with path) of
the library file is given. When an object is instantiated, the library is
automatically loaded (if this has not yet been done), and when the last
object that needs the library is destroyed, the library is automatically
unloaded.

Usually, VBX elements possess properties documented by the producer
of the library. They are often referred to with a name, i.e. a string. The
state of a property is checked with the member function getPropbyName.

In order to have access to the VBX support, it is necessary to include the
header file <cpvbx.h>. You must also check the VBX checkbox in the
Target Expert (press the right mouse button while the cursor is on the
EXE node in the project tree.)

// LEARN23.CPP

#define OBJECT_TURTLE
#include <champ.h>
#include <cpvbx.h>
#include "learn23.rh"

enum {stopped, running, aborting} state = stopped;

void gmain ()
{
 long on = 0;;

 CPModelessDialog myDialog("LEARN23_DIALOG");
 CPVbxControl switch1("switch.vbx", myDialog,
 IDC_BISWITCH1);
 CPVbxControl switch2("switch.vbx", myDialog,
 IDC_BISWITCH2);

50

 CPWindow wnd("Learn23");
 Turtle john;
 john.setPos(wnd, 0, 0);
 myDialog.showModeless(wnd, CP::lowerLeft);

 do
 {
 switch1.getPropByName("On", &on);
 if (on)
 state = running;
 else
 state = stopped;

 switch2.getPropByName("On", &on);
 if (on)
 state = aborting;

 switch (state)
 {
 case stopped:
 CP::yield();
 break;

 case running:
 john.forward(10).left(10);
 break;
 }
 } while (state != aborting);
}

Step 24: Class declaration

In the following, a class hierarchy will be constructed as follows:

class
Turtle

class
TurtleBoy

class
TurtleGirl

class
ToyTurtle

class
TurtleKid

51

Aim: Learning how to construct a class through derivation.

Procedure: Using the class Turtle, define a class ToyTurtle, the objects of which have
the ability to draw a square with the member function shape in addition to
the abilities of the Turtles.

Remarks: In the class definition, the base class is provided with the addition public,
following a colon. This grants objects of the derived class ToyTurtle
exactly the same access to the base class as objects of the base class
itself.

Objects of the derived class are at the same time objects of the base
class, so "ToyTurtles are Turtles" ("is-a" relation). Thus, ToyTurtles
"inherit" all the Turtles' abilities and properties.

The member functions of the class are only declared and not defined in
the class definition (the class contains a function prototype). The function
definition is outside the class definition and must therefore be given a
scope. This is done with the double colon (scope operator).

// LEARN24.CPP

#define OBJECT_TURTLE
#include <champ.h>

// ----------- Class ToyTurtle ------------------------
class ToyTurtle : public Turtle
{
 public:
 void shape ();
};

void ToyTurtle::shape ()
{
 repeat (4)
 {
 forward(50);
 left(90);
 }
}

void gmain ()
{
 ginit("Learn24");
 Turtle::speed(100);

 // John is a Turtle only
 Turtle john;
 john.turtleColor(GREEN);
 john.forward(100);
 john.right(90);
 john.forward(100);

 // But Laura is a Turtle and a ToyTurtle
 ToyTurtle laura;
 laura.turtleColor(YELLOW);

52

 laura.left(45);
 laura.forward(100);
 laura.shape(); // Laura can draw a shape!

 getch();
 gend();
}

Step 25: Private data elements

Aim: Understanding how important private data elements are.

Procedure: Define a class TurtleKid derived from ToyTurtle, the instances of which
can learn a name and then write it out.

Remarks: The names are "protected" towards the outside world with the access
specification "private", i.e. only member functions of their class have
reading and writing access to these names.

For data encapsulation it is highly important that, as well as possible, all
data elements belong to the private section of the class. This way, the
possibility of an illicit access from outside the class, which would usually
lead to serious program mistakes, is excluded.

The graphical overlapping of the turtles is automatically handled.
However, if other graphic elements (also writing) are to be written over the
turtles, then the turtles must be taken away beforehand with lift and then
be set down again with drop.

If a function is given a string to which it has only reading access, the
string should be marked with "const". (Otherwise no strings of the type
"const char" can be passed on.)

// LEARN25.CPP

#define OBJECT_TURTLE
#include <string.h>
#include <champ.h>

// ----------- Class ToyTurtle ------------------------
class ToyTurtle : public Turtle
{
 public:
 void shape ();
};

void ToyTurtle::shape ()
{
 repeat (4)
 {
 forward(50);
 left(90);
 }

53

}

// ----------- Class TurtleKid ------------------------
class TurtleKid : public ToyTurtle
{
 public:
 void learnName (const char name[]);
 void sayName ();

 private:
 char myName[20];
};

void TurtleKid::learnName(const char name[])
{
 strcpy(myName, name);
}

void TurtleKid::sayName ()
{
 lift(); // Hide turtle to draw text on background
 gpos(xCor()+10, yCor());
 gtext(myName);
 drop(); // lift-drop pair
}

void gmain ()
{
 ginit("Learn25");
 Turtle::speed(100);

 TurtleKid laura; // Laura is a TurtleKid now
 laura.turtleColor(YELLOW);
 laura.learnName("Laura"); // She learns her name
 laura.forward(100);
 laura.left(45);
 laura.sayName(); // She knows how to write it
 laura.shape(); // She still knows how to draw

 getch();
 gend();
}

Step 26: Overriding

Aim: Getting to know the technique of overriding member functions.

Procedure: Define two classes TurtleGirl and TurtleBoy derived from TurtleKid.
Instances of TurtleGirl should draw circles when shape is called, those of
TurtleBoy triangles.

Remarks: In the derived classes, the member function shape is redefined. Even
though the derived class inherits the function shape from the base class
ToyTurtle, this function is hidden as soon as a different function with the
same name and the same parameter list is defined in the derived class.

54

// LEARN26.CPP

#define OBJECT_TURTLE
#include <string.h>
#include <champ.h>

// ----------- Class ToyTurtle ------------------------
class ToyTurtle : public Turtle
{
 public:
 void shape ();
};

void ToyTurtle::shape ()
{
 repeat (4)
 {
 forward(50);
 left(90);
 }
}

// ----------- Class TurtleKid ------------------------
class TurtleKid : public ToyTurtle
{
 public:
 void learnName (const char name[]);
 void sayName ();

 private:
 char myName[20];
};

void TurtleKid::learnName(const char name[])
{
 strcpy(myName, name);
}

void TurtleKid::sayName ()
{
 lift();
 gpos(xCor()+10, yCor());
 gtext(myName);
 drop();
}

// ----------- Class TurtleGirl -----------------------
class TurtleGirl : public TurtleKid
{
 public:
 void shape ();
};

void TurtleGirl::shape ()
{
 fill(LIGHTCYAN);
 repeat (180)
 {
 forward(1);

55

 left(2);
 }
 fillOff();
}

// ----------- Class TurtleBoy ------------------------
class TurtleBoy : public TurtleKid
{
 public:
 void shape ();
};

void TurtleBoy::shape ()
{
 fill(LIGHTCYAN);
 repeat (3)
 {
 forward(50);
 left(120);
 }
 fillOff();
}

void gmain ()
{
 TurtleKid * pKid;
 TurtleGirl * pGirl;
 TurtleBoy * pBoy;

 ginit("Learn26");
 Turtle::speed(100);

 pGirl = new TurtleGirl;
 pGirl->turtleColor(YELLOW);
 pGirl->learnName("Kathy");
 pGirl->left(45);
 pGirl->forward(100);
 pGirl->shape();
 pGirl->sayName();

 pBoy = new TurtleBoy;
 pBoy->turtleColor(RED);
 pBoy->learnName("Jimmy");
 pBoy->right(45);
 pBoy->forward(100);
 pBoy->shape();
 pBoy->sayName();

 pKid = new TurtleKid;
 pKid->turtleColor(GREEN);
 pKid->learnName("John");
 pKid->back(100);
 pKid->left(45);
 pKid->shape();
 pKid->sayName();

 CP::msgBox("Learn26", MB_OK, "Delete turtles");
 delete pGirl;
 delete pBoy;

56

 delete pKid;

 getch();
 gend();
}

Step 27: Overloading and default parameters

Aim: Getting to know the technique of overloading functions.

Procedure: Define a second function shape in the class TurtleBoy that draws a filled-
in shape. The filling color is to be chosen with a parameter value.

Remarks: Functions even within the same scope can have the same name, under
the condition that their parameter lists are different. It is the compiler's
task to choose the right function, based on the parameter list.

Supplements: It is possible to give a parameter a default value. This value is assigned to
the parameter whenever the parameter is not used in the function call.
Default parameters must be listed in the parameter list in an uninterrupted
sequence from right to left.

Often overloading can be avoided by using default parameters, which
usually results in a better style of programming. Change the preceding
program, so that overloading is not necessary.

// LEARN27.CPP

#define OBJECT_TURTLE
#include <string.h>
#include <champ.h>

// ----------- Class ToyTurtle ------------------------
class ToyTurtle : public Turtle
{
 public:
 void shape ();
};

void ToyTurtle::shape ()
{
 repeat (4)
 {
 forward(50);
 left(90);
 }
}

// ----------- Class TurtleKid ------------------------
class TurtleKid : public ToyTurtle
{
 public:
 void learnName (const char name[]);
 void sayName ();

57

 private:
 char myName[20];
};

void TurtleKid::learnName(const char name[])
{
 strcpy(myName, name);
}

void TurtleKid::sayName ()
{
 lift();
 gpos(xCor()+10, yCor());
 gtext(myName);
 drop();
}

// ----------- Class TurtleGirl -----------------------
class TurtleGirl : public TurtleKid
{
 public:
 void shape ();
};

void TurtleGirl::shape ()
{
 fill(LIGHTCYAN);
 repeat (180)
 {
 forward(1);
 left(2);
 }
 fillOff();
}

// ----------- Class TurtleBoy ------------------------
class TurtleBoy : public TurtleKid
{
 public:
 void shape ();
 void shape (int fillcolor); // This is new
};

void TurtleBoy::shape ()
{
 fill(LIGHTCYAN);
 repeat (3)
 {
 forward(50);
 left(120);
 }
 fillOff();
}

void TurtleBoy::shape (int fillcolor)
{
 fill(fillcolor);
 repeat (3)
 {
 forward(50);

58

 left(120);
 }
 fillOff();
}

void gmain ()
{
 TurtleBoy * pBoy;
 Turtle::speed(100);

 ginit("Learn27");

 pBoy = new TurtleBoy;
 pBoy->turtleColor(RED);
 pBoy->learnName("Jimmy");
 pBoy->forward(60);
 pBoy->shape();
 pBoy->forward(60);
 pBoy->shape(YELLOW);
 pBoy->sayName();
 delete pBoy;

 getch();
 gend();

}// LEARN27A.CPP

#define OBJECT_TURTLE
#include <string.h>
#include <champ.h>

// ----------- Class ToyTurtle ------------------------
class ToyTurtle : public Turtle
{
 public:
 void shape ();
};

void ToyTurtle::shape ()
{
 repeat (4)
 {
 forward(50);
 left(90);
 }
}

// ----------- Class TurtleKid ------------------------
class TurtleKid : public ToyTurtle
{
 public:
 void learnName (const char name[]);
 void sayName ();

 private:
 char myName[20];
};

void TurtleKid::learnName(const char name[])

59

{
 strcpy(myName, name);
}

void TurtleKid::sayName ()
{
 lift();
 gpos(xCor()+10, yCor());
 gtext(myName);
 drop();
}

// ----------- Class TurtleGirl -----------------------
class TurtleGirl : public TurtleKid
{
 public:
 void shape ();
};

void TurtleGirl::shape ()
{
 fill(LIGHTCYAN);
 repeat (180)
 {
 forward(1);
 left(2);
 }
 fillOff();
}

// ----------- Class TurtleBoy ------------------------
class TurtleBoy : public TurtleKid
{
 public:
 void shape (int fillcolor = LIGHTCYAN); //
This is new
};

void TurtleBoy::shape (int fillcolor)
{
 fill(fillcolor);
 repeat (3)
 {
 forward(50);
 left(120);
 }
 fillOff();
}

void gmain ()
{
 TurtleBoy * pBoy;
 Turtle::speed(100);

 ginit("Learn27a");

 pBoy = new TurtleBoy;
 pBoy->turtleColor(RED);
 pBoy->learnName("Jimmy");
 pBoy->forward(60);

60

 pBoy->shape();
 pBoy->forward(60);
 pBoy->shape(YELLOW);
 pBoy->sayName();
 delete pBoy;

 getch();
 gend();
}

Step 28: Constructors

Aim: Getting to know constructors.

Procedure: Change the class definition of TurtleBoy, so that the color of the turtle can
be set in the instantiation.

Remarks: Often, in the instantiation of an object, certain operations must
automatically be executed, e.g. initializing data elements. For this purpose
there are special member functions called constructors that carry the
same name as their class. Like any other function, constructors can be
overloaded.

Constructors cannot return values. For this reason, no return value, not
even void, can be defined.

Every class possesses a so-called default constructor that the compiler
automatically creates. It does not have any parameters and merely
reserves storage room for the object. However, if a constructor is defined
in the class declaration, the default constructor created by the compiler is
not used any longer and therefore has to be defined explicitly if needed.

Supplements: In a class hierarchy, constructors are automatically called in order from
the base class to the derived class. If they need to be given parameter
values, the constructor of the base class must be listed in the definition of
the one of the derived class, separated by a colon.

Usually, it is dangerous to call constructors explicitly; in particular it is
often wrong to explicitly call a constructor of the base class within the
body of a constructor of a derived class.

The class Turtle already has a constructor that determines the color of the
turtle. Introduce such constructors in the whole class hierarchy.

// LEARN28.CPP

#define OBJECT_TURTLE
#include <string.h>
#include <champ.h>

// ----------- Class ToyTurtle ------------------------
class ToyTurtle : public Turtle
{

61

 public:
 void shape ();
};

void ToyTurtle::shape ()
{
 repeat (4)
 {
 forward(50);
 left(90);
 }
}

// ----------- Class TurtleKid ------------------------
class TurtleKid : public ToyTurtle
{
 public:
 void learnName (const char name[]);
 void sayName ();

 private:
 char myName[20];
};

void TurtleKid::learnName(const char name[])
{
 strcpy(myName, name);
}

void TurtleKid::sayName ()
{
 lift();
 gpos(xCor()+10, yCor());
 gtext(myName);
 drop();
}

// ----------- Class TurtleGirl -----------------------
class TurtleGirl : public TurtleKid
{
 public:
 void shape ();
};

void TurtleGirl::shape ()
{
 fill(LIGHTCYAN);
 repeat (180)
 {
 forward(1);
 left(2);
 }
 fillOff();
}

// ----------- Class TurtleBoy ------------------------
class TurtleBoy : public TurtleKid
{
 public:
 TurtleBoy (int color); // Ctor declaration

62

 void shape ();
};

TurtleBoy::TurtleBoy (int color) // Ctor definition
{
 turtleColor(color);
}

void TurtleBoy::shape ()
{
 fill(LIGHTCYAN);
 repeat (3)
 {
 forward(50);
 left(120);
 }
 fillOff();
}

void gmain ()
{
 ginit("Learn28");
 Turtle::speed(100);

 TurtleBoy aBoy(LIGHTRED);
 aBoy.forward(60);
 aBoy.shape();

 getch();
 gend();

}// LEARN28A.CPP

#define OBJECT_TURTLE
#include <string.h>
#include <champ.h>

// ----------- Class ToyTurtle ------------------------
class ToyTurtle : public Turtle
{
 public:
 ToyTurtle (int color);
 void shape ();
};

ToyTurtle::ToyTurtle (int color) : Turtle(color)
{}

void ToyTurtle::shape ()
{
 repeat (4)
 {
 forward(50);
 left(90);
 }
}

// ----------- Class TurtleKid ------------------------
class TurtleKid : public ToyTurtle

63

{
 public:
 TurtleKid (int color);
 void learnName (const char name[]);
 void sayName ();

 private:
 char myName[20];
};

TurtleKid::TurtleKid (int color) : ToyTurtle(color)
{}

void TurtleKid::learnName(const char name[])
{
 strcpy(myName, name);
}

void TurtleKid::sayName ()
{
 lift();
 gpos(xCor()+10, yCor());
 gtext(myName);
 drop();
}

// ----------- Class TurtleGirl -----------------------
class TurtleGirl : public TurtleKid
{
 public:
 TurtleGirl (int color);
 void shape ();
};

TurtleGirl::TurtleGirl (int color) : TurtleKid(color
)
{}

void TurtleGirl::shape ()
{
 fill(LIGHTCYAN);
 repeat (180)
 {
 forward(1);
 left(2);
 }
 fillOff();
}

// ----------- Class TurtleBoy ------------------------
class TurtleBoy : public TurtleKid
{
 public:
 TurtleBoy (int color);
 void shape ();
};

TurtleBoy::TurtleBoy (int color) : TurtleKid(color)
{}

64

void TurtleBoy::shape ()
{
 fill(LIGHTCYAN);
 repeat (3)
 {
 forward(50);
 left(120);
 }
 fillOff();
}

void gmain ()
{
 ginit("Learn28a");
 Turtle::speed(100);

 TurtleBoy aBoy(LIGHTRED);
 aBoy.forward(60);
 aBoy.shape();

 getch();
 gend();
}

Step 29: Destructors

Aim: Getting to know destructors.

Procedure: Change the class definition of TurtleBoy so that the instances do a
farewell pirouette.

Remarks: Destructors are used when the disappearing of an object (caused by a
scope exit or a delete operation) makes it necessary to have some
cleaning-up automatically done. Destructors carry the same name as their
class, preceded by a tilde.

Destructors cannot return any values. For this reason no return value, not
even void, can be defined. Destructors may not possess parameters.

// LEARN29.CPP

#define OBJECT_TURTLE
#include <string.h>
#include <champ.h>

// ----------- Class ToyTurtle ------------------------
class ToyTurtle : public Turtle
{
 public:
 void shape ();
};

void ToyTurtle::shape ()
{

65

 repeat (4)
 {
 forward(50);
 left(90);
 }
}

// ----------- Class TurtleKid ------------------------
class TurtleKid : public ToyTurtle
{
 public:
 void learnName (const char name[]);
 void sayName ();

 private:
 char myName[20];
};

void TurtleKid::learnName(const char name[])
{
 strcpy(myName, name);
}

void TurtleKid::sayName ()
{
 lift();
 gpos(xCor()+10, yCor());
 gtext(myName);
 drop();
}

// ----------- Class TurtleGirl -----------------------
class TurtleGirl : public TurtleKid
{
 public:
 void shape ();
};

void TurtleGirl::shape ()
{
 fill(LIGHTCYAN);
 repeat (180)
 {
 forward(1);
 left(2);
 }
 fillOff();
}

// ----------- Class TurtleBoy ------------------------
class TurtleBoy : public TurtleKid
{
 public:
 TurtleBoy (int color);
 ~TurtleBoy (); // Destructor declaration
 void shape ();
};

TurtleBoy::TurtleBoy (int color)
{

66

 turtleColor(color);
}

TurtleBoy::~TurtleBoy () // Destructor definition
{
 home();
 repeat (8)
 right(45);
}

void TurtleBoy::shape ()
{
 fill(LIGHTCYAN);
 repeat (3)
 {
 forward(50);
 left(120);
 }
 fillOff();
}

void gmain ()
{
 ginit("Learn29");
 Turtle::speed(40);

 {
 TurtleBoy aBoy(LIGHTRED);

 aBoy.forward(60);
 aBoy.shape();
 } // Destructor is called automatically here

 getch();
 gend();
}

Step 30: Virtual functions

Aim: Getting to know virtual functions.

Procedure: Define a function flower that gets a reference to TurtleGirl or TurtleBoy
and draws a flower. Depending on which of the two references is given
during execution time, the flower is drawn with the shape of the one object
or the other.

Remarks: At compilation time the compiler cannot decide which member function
shape to call. Because this can only be determined at execution time, the
technique is called late or dynamic binding.

Investigate and explain the behavior when "virtual" is omitted.

Supplement: Instead of passing a reference to the function flower, use a pointer.

// LEARN30.CPP

67

#define OBJECT_TURTLE
#include <string.h>
#include <champ.h>

// ----------- Class ToyTurtle ------------------------
class ToyTurtle : public Turtle
{
 public:
 virtual void shape (); // Now virtual!
};

void ToyTurtle::shape ()
{
 repeat (4)
 {
 forward(50);
 left(90);
 }
}

// ----------- Class TurtleKid ------------------------
class TurtleKid : public ToyTurtle
{
 public:
 void learnName (const char name[]);
 void sayName ();

 private:
 char myName[20];
};

void TurtleKid::learnName(const char name[])
{
 strcpy(myName, name);
}

void TurtleKid::sayName ()
{
 lift();
 gpos(xCor()+10, yCor());
 gtext(myName);
 drop();
}

// ----------- Class TurtleGirl -----------------------
class TurtleGirl : public TurtleKid
{
 public:
 virtual void shape ();
};

void TurtleGirl::shape ()
{
 fill(LIGHTCYAN);
 repeat (180)
 {
 forward(1);
 left(2);
 }
 fillOff();

68

}

// ----------- Class TurtleBoy ------------------------
class TurtleBoy : public TurtleKid
{
 public:
 virtual void shape ();
};

void TurtleBoy::shape ()
{
 fill(LIGHTCYAN);
 repeat (3)
 {
 forward(50);
 left(120);
 }
 fillOff();
}

void flower (ToyTurtle & aToy);

void gmain ()
{
 ginit("Learn30");
 Turtle::speed(100);

 char sex;
 CPInputChar("Select sex", "Boy or Girl (b,g)?",
 sex, 'b').showModal();

 if (sex == 'b')
 {
 TurtleBoy john;
 flower(john); // John is also a ToyTurtle
 }
 else
 {
 TurtleGirl laura;
 flower(laura); // Laura is also a ToyTurtle
 }

 getch();
 gend();
}

void flower (ToyTurtle & aToy)
{
 aToy.forward(100);
 aToy.right(40);

 repeat (3)
 {
 // Draw shape of the actual object
 // shape() is virtual
 aToy.shape();
 aToy.left(120);
 }
}

69

// LEARN30A.CPP

#define OBJECT_TURTLE
#include <string.h>
#include <champ.h>

// ----------- Class ToyTurtle ------------------------
class ToyTurtle : public Turtle
{
 public:
 virtual void shape (); // Now virtual!
};

void ToyTurtle::shape ()
{
 repeat (4)
 {
 forward(50);
 left(90);
 }
}

// ----------- Class TurtleKid ------------------------
class TurtleKid : public ToyTurtle
{
 public:
 void learnName (const char name[]);
 void sayName ();

 private:
 char myName[20];
};

void TurtleKid::learnName(const char name[])
{
 strcpy(myName, name);
}

void TurtleKid::sayName ()
{
 lift();
 gpos(xCor()+10, yCor());
 gtext(myName);
 drop();
}

// ----------- Class TurtleGirl -----------------------
class TurtleGirl : public TurtleKid
{
 public:
 virtual void shape ();
};

void TurtleGirl::shape ()
{
 fill(LIGHTCYAN);
 repeat (180)
 {
 forward(1);

70

 left(2);
 }
 fillOff();
}

// ----------- Class TurtleBoy ------------------------
class TurtleBoy : public TurtleKid
{
 public:
 virtual void shape ();
};

void TurtleBoy::shape ()
{
 fill(LIGHTCYAN);
 repeat (3)
 {
 forward(50);
 left(120);
 }
 fillOff();
}

void flower (ToyTurtle* pToy);

void gmain ()
{
 ginit("Learn30a");
 Turtle::speed(100);

 ToyTurtle * pToy;
 char sex;

 CPInputChar("Select sex", "Boy or Girl (b,g)?",
 sex, 'b').showModal();

 if (sex == 'b')
 pToy = new TurtleBoy;
 else
 pToy = new TurtleGirl;

 flower(pToy);

 getch();
 delete pToy;
 gend();
}

void flower (ToyTurtle* pToy)
{
 pToy->forward(100);
 pToy->right(40);

 repeat (3)
 {
 pToy->shape();
 pToy->left(120);
 }
}

71

Step 31: Static class members

Aim: Getting to know to use static data members and static member functions.

Procedure: Starting with program TURTLE29.CPP add a constructor in the class
ToyTurtle that clears the screen and paints it to green color.when the first
ToyTurtle instance is created.

Remarks: Because we clear the screeen we must do this only when the first object is
instantiated. That’s why we use a boolean flag haveToPrepare which
cannot be a data member but must be unique for all instances of the
class. Thus we declare it static and must reserve storage for it by
defining it outside the class definition.

Supplements: The clearing operation should take place before the turtle is shown. Do
do this, just add a static data member of the same class to the private
section and the constuctor is called before gmain (or main) is started!
Because the clearing operation is a graphics function the graphics system
must be initialized at this point now.

It is a good programming style to isolate the initializing operation in a
static member function prepare that is called by the constructor. In
contrast to normal member functions, static member functions belong to
the class and not to each individual instance. (To save storage space the
code of a normal member function is not stored for each instance of the
class, but the function gets the hidden parameter this, that identifies the
instance calling it.)

// LEARN31.CPP

#define OBJECT_TURTLE
#include <string.h>
#include <champ.h>

// ----------- Class ToyTurtle ------------------------
class ToyTurtle : public Turtle
{
 public:
 ToyTurtle (); // New (default) constructor
 void shape ();

 private:
 static bool haveToPrepare;
};

// Static data member
bool ToyTurtle::haveToPrepare = true;
// Reserve storage space and initialize

ToyTurtle::ToyTurtle ()
{
 if (haveToPrepare)
 {
 gclear(LIGHTGREEN);

72

 haveToPrepare = false;
 }
}

void ToyTurtle::shape ()
{
 repeat (4)
 {
 forward(50);
 left(90);
 }
}

// ----------- Class TurtleKid ------------------------
class TurtleKid : public ToyTurtle
{
 public:
 void learnName (const char name[]);
 void sayName ();

 private:
 char myName[20];
};

void TurtleKid::learnName(const char name[])
{
 strcpy(myName, name);
}

void TurtleKid::sayName ()
{
 lift();
 gpos(xCor()+10, yCor());
 gtext(myName);
 drop();
}

// ----------- Class TurtleGirl -----------------------
class TurtleGirl : public TurtleKid
{
 public:
 void shape ();
};

void TurtleGirl::shape ()
{
 fill(LIGHTCYAN);
 repeat (180)
 {
 forward(1);
 left(2);
 }
 fillOff();
}

// ----------- Class TurtleBoy ------------------------
class TurtleBoy : public TurtleKid
{
 public:
 TurtleBoy (int color);

73

 ~TurtleBoy ();
 void shape ();
};

TurtleBoy::TurtleBoy (int color)
{
 turtleColor(color);
}

TurtleBoy::~TurtleBoy ()
{
 home();
 repeat (8)
 right(45);
}

void TurtleBoy::shape ()
{
 fill(LIGHTCYAN);
 repeat (3)
 {
 forward(50);
 left(120);
 }
 fillOff();
}

void gmain ()
{
 ginit("Learn31");
 Turtle::speed(100);

 TurtleBoy aBoy(LIGHTRED);
 aBoy.forward(60);
 aBoy.shape();

 TurtleGirl aGirl;
 aGirl.left(90);
 aGirl.forward(60);
 aGirl.shape();

 getch();
 gend();
}

// LEARN31A.CPP

#define OBJECT_TURTLE
#include <string.h>
#include <champ.h>

// ----------- Class ToyTurtle ------------------------
class ToyTurtle : public Turtle
{
 public:
 ToyTurtle ();
 void shape ();

 private:

74

 static bool haveToPrepare;
 static ToyTurtle aToyTurtle;
};

// Static data members
bool ToyTurtle::haveToPrepare = true;
ToyTurtle ToyTurtle::aToyTurtle; // Ctor is called here

ToyTurtle::ToyTurtle ()
{
 if (haveToPrepare)
 {
 ginit("Learn31a");
 gclear(LIGHTGREEN);
 speed(100);
 haveToPrepare = false;
 }
}

void ToyTurtle::shape ()
{
 repeat (4)
 {
 forward(50);
 left(90);
 }
}

// ----------- Class TurtleKid ------------------------
class TurtleKid : public ToyTurtle
{
 public:
 void learnName (const char name[]);
 void sayName ();

 private:
 char myName[20];
};

void TurtleKid::learnName(const char name[])
{
 strcpy(myName, name);
}

void TurtleKid::sayName ()
{
 lift();
 gpos(xCor()+10, yCor());
 gtext(myName);
 drop();
}

// ----------- Class TurtleGirl -----------------------
class TurtleGirl : public TurtleKid
{
 public:
 void shape ();
};

void TurtleGirl::shape ()

75

{
 fill(LIGHTCYAN);
 repeat (180)
 {
 forward(1);
 left(2);
 }
 fillOff();
}

// ----------- Class TurtleBoy ------------------------
class TurtleBoy : public TurtleKid
{
 public:
 TurtleBoy (int color);
 ~TurtleBoy ();
 void shape ();
};

TurtleBoy::TurtleBoy (int color)
{
 turtleColor(color);
}

TurtleBoy::~TurtleBoy ()
{
 home();
 repeat (8)
 right(45);
}

void TurtleBoy::shape ()
{
 fill(LIGHTCYAN);
 repeat (3)
 {
 forward(50);
 left(120);
 }
 fillOff();
}

void gmain ()
{
 TurtleBoy aBoy(LIGHTRED);
 aBoy.forward(60);
 aBoy.shape();

 TurtleGirl aGirl;
 aGirl.left(90);
 aGirl.forward(60);
 aGirl.shape();

 getch();
 gend();
}

// LEARN31B.CPP

76

#define OBJECT_TURTLE
#include <string.h>
#include <champ.h>

// ----------- Class ToyTurtle ------------------------
class ToyTurtle : public Turtle
{
 public:
 ToyTurtle ();
 void shape ();

 private:
 static void prepare ();
 static bool haveToPrepare;
 static ToyTurtle aToyTurtle;
};

// Static data members
bool ToyTurtle::haveToPrepare = true;
ToyTurtle ToyTurtle::aToyTurtle; // Ctor will be called

// Static function
void ToyTurtle::prepare ()
{
 ginit("Learn31b");
 gclear(LIGHTGREEN);
 speed(100);
}

ToyTurtle::ToyTurtle ()
{
 if (haveToPrepare)
 {
 prepare();
 haveToPrepare = false;
 }
}

void ToyTurtle::shape ()
{
 repeat (4)
 {
 forward(50);
 left(90);
 }
}

// ----------- Class TurtleKid ------------------------
class TurtleKid : public ToyTurtle
{
 public:
 void learnName (const char name[]);
 void sayName ();

 private:
 char myName[20];
};

void TurtleKid::learnName(const char name[])
{

77

 strcpy(myName, name);
}

void TurtleKid::sayName ()
{
 lift();
 gpos(xCor()+10, yCor());
 gtext(myName);
 drop();
}

// ----------- Class TurtleGirl -----------------------
class TurtleGirl : public TurtleKid
{
 public:
 void shape ();
};

void TurtleGirl::shape ()
{
 fill(LIGHTCYAN);
 repeat (180)
 {
 forward(1);
 left(2);
 }
 fillOff();
}

// ----------- Class TurtleBoy ------------------------
class TurtleBoy : public TurtleKid
{
 public:
 TurtleBoy (int color);
 ~TurtleBoy ();
 void shape ();
};

TurtleBoy::TurtleBoy (int color)
{
 turtleColor(color);
}

TurtleBoy::~TurtleBoy ()
{
 home();
 repeat (8)
 right(45);
}

void TurtleBoy::shape ()
{
 fill(LIGHTCYAN);
 repeat (3)
 {
 forward(50);
 left(120);
 }
 fillOff();
}

78

void gmain ()
{
 TurtleBoy aBoy(LIGHTRED);
 aBoy.forward(60);
 aBoy.shape();

 TurtleGirl aGirl;
 aGirl.left(90);
 aGirl.forward(60);
 aGirl.shape();

 getch();
 gend();
}

Step 32: "This" pointer

Aim: Getting to know the "this" pointer.

Procedure: Modify the class ToyTurtle so that shape returns a reference to a
ToyTurtle. Thus, programs become more elegant because calls can be
concatenated.

Remarks: Since "this" is a pointer to the current instance, it must be dereferenced
with a * in order to obtain a reference.

In order to save space the member functions are coded once only for all
instances of a class. When the member function is called, its "this"
pointer, i.e. the pointer to the current object, is added as a hidden
parameter. This way, the object’s data members are accessible from
within the member function.

// LEARN32.CPP

#define OBJECT_TURTLE
#include <champ.h>

// ----------- Class ToyTurtle ------------------------
class ToyTurtle : public Turtle
{
 public:
 // Return reference to ToyTurtle
 ToyTurtle & shape ();
};

ToyTurtle & ToyTurtle::shape ()
{
 repeat (4)
 {
 forward(50);
 left(90);
 }
 return *this;
}

79

void gmain ()
{
 ginit("Learn32");
 Turtle::speed(100);

 Turtle john;
 john.forward(100).right(90).forward(100);

 ToyTurtle laura;
 laura.shape().left(45).forward(100);

 getch();
 gend();
}

Step 33: Overloading operators; friend functions

Aim: Getting to know the technique of overloading operators and realizing the
importance of friend functions.

Procedure: Overload the operator << (extractor) so that the name of a ToyTurtle can
be printed out with cout.

Remarks: It is best to understand the << operator as a usual function with the
special name (operator<<) and the parameter list (left, right), left and right
meaning the arguments to the left resp. to the right of the operator in the
call.

In order for the operator function (in this case not a member function) to
have access to the private data in the class ToyTurtle, it must be declared
as a friend in that class.

The operator returns a reference to "ostream", so that several calls with
cout can be concatenated.

It is also possible to declare a class or a function as a friend. It then has
access to all the private data members and member functions. However,
since this means breaking through the protection barrier, it should be
done as rarely as possible.

Instead of regarding an operator as a global (friend) function, it can also
be defined as a member function. Like every other instance, it can then
obtain access to the current instance with the "this" pointer.

Supplements: Introduce a class NameBox, the members of which can print out a name in
a Windows messagebox. Then overload the << operator so that the code

NameBox blackBoard;
blackBoard << kid;

prints out the name of the TurtleKid.

80

// LEARN33.CPP

#define OBJECT_TURTLE
#include <string.h>
#include <champ.h>

// ----------- Class ToyTurtle ------------------------
class ToyTurtle : public Turtle
{
 public:
 void shape ();
};

void ToyTurtle::shape ()
{
 repeat (4)
 {
 forward(50);
 left(90);
 }
}

// ----------- Class TurtleKid ------------------------
class TurtleKid : public ToyTurtle
{
 public:
 void learnName (const char * name);
 friend ostream & operator<< (ostream & out,
 TurtleKid & aKid);

 private:
 char myName[20];
};

void TurtleKid::learnName (const char * name)
{
 strcpy(myName, name);
}

ostream & operator<< (ostream & out,
 TurtleKid & aKid)
{
 out << aKid.myName;
 return out;
}

void gmain ()
{
 ginit("Learn33");
 cinit("Learn33", 10, 40, CPPosition(300, 200));

 TurtleKid kid;
 kid.speed(100);
 kid.turtleColor(YELLOW);
 kid.learnName("Laura");
 kid.forward(100);
 kid.left(45);
 kid.shape();

81

 cout << "My name is " << kid << " !";
 // What a nice syntax!

 getch();
 cend();
 gend();
}

// LEARN33A.CPP

#define OBJECT_TURTLE
#include <string.h>
#include <champ.h>

// ----------- Class NameBox --------------------------
class NameBox
{
 public:
 void show (const char * msg);
};

void NameBox::show (const char * msg)
{
 CP::msgBox("Welcome, my name is:", MB_OK, msg);
}

// ----------- Class ToyTurtle ------------------------
class ToyTurtle : public Turtle
{
 public:
 void shape ();
};

void ToyTurtle::shape ()
{
 repeat (4)
 {
 forward(50);
 left(90);
 }
}

// ----------- Class TurtleKid ------------------------
class TurtleKid : public ToyTurtle
{
 public:
 void learnName(const char * name);
 friend void operator<< (NameBox & aBox,
 TurtleKid & aKid);

 private:
 char myName[20];
};

void TurtleKid::learnName (const char * name)
{
 strcpy(myName, name);
}

82

void operator<< (NameBox & aBox, TurtleKid & aKid)
{
 aBox.show(aKid.myName);
}

void gmain ()
{
 ginit("Learn33a");
 NameBox blackBoard;

 TurtleKid kid;
 kid.speed(100);
 kid.turtleColor(YELLOW);
 kid.learnName("Laura");
 kid.forward(100);
 kid.left(45);
 kid.shape();
 blackBoard << kid; // Nice, isn't?
 gend();
}

Step 34: Copy constructor, assignment operator, addition operator

Aim: Getting to know when the copy constructor is called and how to redefine
the assignment and addition operaters.

Procedure: Define a copy constructor in the class TurtleKid to enable initializations
during instantiation. The name of the turtle is to be stored in dynamic
storage space (on the heap).

Remarks: The compiler uses the copy constructor when instantiating an object and
at the same time initializing it. The copy constructor is also needed when
a call-by-value is used, and when a function returns an object, because a
temporary object must be created (on the stack).

Supplements: Overload the + and the = operator to enable the "addition" and the
"assignment" of instances of the class TurtleKid.

Remarks: For the observation of the processes, a text is written into the text window
at important points in the program. In particular, it can be noted that,
before the return of the function operator+, a new stack object is created
on the stack, the initialization of which is executed by the copy
constructor. Then, the "temp" object, defined locally within the function, is
removed. Next, the stack object is copied into the element to the left of the
equality sign by the assignment operator, and finally, the stack element is
removed (of several superposed turtles, only the top one is visible).

// LEARN34.CPP

#define OBJECT_TURTLE
#include <string.h>
#include <champ.h>

83

// ----------- Class ToyTurtle ------------------------
class ToyTurtle : public Turtle
{
 public:
 void shape ();
};

void ToyTurtle::shape ()
{
 repeat (4)
 {
 forward(50);
 left(90);
 }
}

// ----------- Class TurtleKid ------------------------
class TurtleKid : public ToyTurtle
{
 public:
 TurtleKid (); // Default ctor
 TurtleKid (char * name); // Initializer ctor
 TurtleKid (TurtleKid & aKid); // Copy ctor
 ~TurtleKid(); // Destructor

 void sayName();

 private:
 char * myName;
};

TurtleKid::TurtleKid ()
{
 myName = new char[1];
 strcpy(myName, "");
}

TurtleKid::TurtleKid (char * name)
{
 myName = new char[strlen(name) + 1];
 strcpy(myName, name);
}

TurtleKid::TurtleKid (TurtleKid & aKid)
{
 setPos(aKid.xCor(), aKid.yCor());
 setHeading(aKid.heading());
 myName = new char[strlen(aKid.myName) + 1];
 strcpy(myName, aKid.myName);
 cout << "Copy contructor executing...\n";
 getch();
}

TurtleKid::~TurtleKid ()
{
 delete [] myName;
 cout << "Destructor executing...\n";
 getch();
}

84

void TurtleKid::sayName ()
{
 lift();
 gpos(xCor()+10, yCor()+10);
 gtext(myName);
 drop();
}

void drawTree (TurtleKid aKid);
// Try instead with
// void drawTree (TurtleKid & aKid);

void gmain ()
{
 ginit("Learn34");
 cinit("Learn34", 10, 40, CPPosition(300, 200));
 Turtle::speed(100);

 {
 TurtleKid kid1("John");
 kid1.forward(100);
 {
 TurtleKid kid2 = kid1;
 kid2.left(90);
 kid2.forward(100);
 kid2.sayName();
 cout << "Clone of kid2 will draw a tree..."
 << endl;
 getch();
 drawTree(kid2);
 cout << "kid2 will fall out of scope..."
 << endl;
 getch();
 }
 cout << "kid1 will fall out of scope..."
 << endl;
 getch();
 }
 getch();
 cend();
 gend();
}

void drawTree (TurtleKid aKid)
{
 aKid.right(90);
 aKid.forward(50);
 aKid.left(45);
 repeat (3)
 {
 aKid.forward(50);
 aKid.back(50);
 aKid.right(45);
 }
 cout << "drawSquare will return..." << endl;
 getch();
}

85

// LEARN34A.C

#define OBJECT_TURTLE
#include <string.h>
#include <champ.h>

// ----------- Class ToyTurtle ------------------------
class ToyTurtle : public Turtle
{
 public:
 void shape ();
};

void ToyTurtle::shape ()
{
 repeat (4)
 {
 forward(50);
 left(90);
 }
}

// ----------- Class TurtleKid ------------------------
class TurtleKid : public ToyTurtle
{
 public:
 TurtleKid ();
 TurtleKid (char* name);
 TurtleKid (TurtleKid & aKid);
 ~TurtleKid ();

 // Overload assignment
 TurtleKid & operator= (TurtleKid & aKid);

 // Declare operator +
 friend TurtleKid operator+ (TurtleKid & aKid1,
 TurtleKid & aKid2);

 void sayName ();

 private:
 char * myName;
};

TurtleKid::TurtleKid ()
{
 myName = new char[1];
 strcpy(myName, "");
}

TurtleKid::TurtleKid (char * name)
{
 myName = new char[strlen(name) + 1];
 strcpy(myName, name);
}

TurtleKid::TurtleKid (TurtleKid & aKid)
{
 setPos(aKid.xCor(), aKid.yCor());
 setHeading(aKid.heading());

86

 myName = new char[strlen(aKid.myName) + 1];
 strcpy(myName, aKid.myName);
 cout << "Copy contructor executing for "
 << myName << "..." << endl;
 getch();
}

TurtleKid::~TurtleKid()
{
 cout << "Destructor executing for "
 << myName << "..." << endl;
 getch();
 delete [] myName;
}

TurtleKid & TurtleKid::operator= (TurtleKid & aKid)
{
 // Make sure you don't destroy target,
 // when using aKid = aKid
 if (this == &aKid)
 return *this;

 delete [] myName; // Destroy old name

 setPos(aKid.xCor(), aKid.yCor());
 setHeading(aKid.heading());
 myName = new char[strlen(aKid.myName) + 1];
 strcpy(myName, aKid.myName);

 cout << "Assignment op executing for " << myName <<
"..." << endl;
 getch();

 return *this;
}

void TurtleKid::sayName ()
{
 lift();
 gpos(xCor()+10, yCor());
 gtext(myName);
 drop();
}

TurtleKid operator+ (TurtleKid & aKid1, TurtleKid &
aKid2)
{
 cout << "Now creating temp object..." << endl;
 getch();
 TurtleKid temp("Temp");
 // Temperary turtle will appear
 temp.turtleColor(RED);
 // To observe it, we paint and move it away
 temp.sayName();
 temp.back(50);
 getch();
 temp.setPos((aKid1.xCor() + aKid2.xCor())/2.0,
 (aKid1.yCor() + aKid2.yCor())/2.0);
 temp.setHeading(aKid1.heading()+aKid2.heading());
 temp.myName = new char[strlen(aKid1.myName)

87

 + strlen(aKid2.myName) + 1];
 strcpy(temp.myName, aKid1.myName);
 strcat(temp.myName, aKid2.myName);
 cout << "operator+() returning now..." << endl;
 getch();
 return temp;
 // Copy ctor executes when temp is copied to stack
}

void gmain ()
{
 ginit("Learn34a");
 cinit("Learn34a", 20, 40, CPPosition(300, 200));
 Turtle::speed(100);

 {
 TurtleKid kid1("John");
 kid1.right(45);
 kid1.forward(100);
 kid1.sayName();

 TurtleKid kid2("Laura");
 kid2.left(45);
 kid2.forward(100);
 kid2.sayName();

 cout << "Now creating kid3..." << endl;
 getch();
 TurtleKid kid3;
 cout << "Now adding kid1 + kid2..." << endl;
 getch();
 kid3 = kid1 + kid2;

 kid3.forward(100);
 kid3.sayName();

 cout << "Turtles will fall out of scope..."
 << endl;
 getch();
 }
 cout << "All done.";
 getch();
 cend();
 gend();
}

Step 35: Recursions

Aim: Getting to know recursive procedures.

Procedure: Draw a binary tree.

Remarks: A tree of the order n is based on the combination of a branch and a tree of
the order n-1. Make sure the turtle returns to the point of departure.

The recursion must be determined, i.e. for simple n, the function must

88

return without a recursive call. It is customary to use the unstructured
return instruction, since this helps make the program clearer.

Recursive functions are usually called through parameters that describe a
"recursion depth"; this is why recursive programming is closely related to
functional programming.

Since the stack is required for every function call, deeply nested
recursions can easily cause stack overflows that lead to fatal execution
time errors. The size of the stack is defined in the .DEF file of the project.

// LEARN34.CPP

#define OBJECT_TURTLE
#include <champ.h>

void binTree (int s);
Turtle su;

void gmain ()
{
 CPWindow wnd("Learn35");
 Turtle::speed(50);
 su.setPos(wnd, 0, -100);
 binTree(128);
 getch();
}

void binTree (int s)
{
 if (s < 16)
 return;
 su.forward(s);
 su.left(45);
 binTree(s / 2);
 su.right(90);
 binTree(s / 2);
 su.left(45);
 su.back(s);
}

6 On the history of C++

The concept of classes and objects showed up for the first time in the programming
language SIMULA-67 in 1967. In the early 1970ies, based on SIMULA, Xerox developed
the programming language Smalltalk, today's most homogenous and complete object
oriented system in the version of Smalltalk-80. Unfortunately, commercial success failed
to come for two reasons: a version for PCs was not available until a short time ago; in
addition, Smalltalk requires programmers used to classical programming languages to
undergo a total change in the way of thinking.

89

In 1980, a project called "C with classes" was started in the Bell Laboratories. Bjarne
Stroustrup succeeded in introducing elements of SIMULA into the programming language
C [3]. In July 1983, the new programming language was for the first time presented
outside the Bell Laboratories. Rick Mascatti named it C++, after the incremental operator
in C.

C++ is a superset of C and, as a hybrid language, elegantly reunites the world of classical
procedural programming with that of object oriented programming. Thus, it is possible to
continue to use C programs and knowledge of C in C++. The language is believed to have
considerable potential for the future, since many modern operating systems are written in
C/C++.

7 Literature

[1] Böhm, Jacopini, Flow Diagrams, Turing Machines and Languages with only two
Formation Rules, Communications of the ACM, May 1966

[2] Papert, Mindstorms - Children, Computers and Powerful Ideas,
Basic Books (1980)

[3] Booch, Object orientied design, Benjamin 1991

[4] Stroustrup, The C++ programming language, Addison-Wesley 1987

[5] Champ Documentation, Salvisberg Software & Consulting, Bern 1995

Appendix 1: Features of Champ

Champ is well-suited for writing graphical and real-time applications, for simulations and
for teaching programming. It does not require any knowledge of Windows API calls or
message processing and can be used even by programmers that do not have previous
experience with C++. System requirements: MS-Windows 3.1x, Borland BC++ 4.5 or
TC++ 4.5, 486 DX with 8 MB RAM recommended.

Features:
• Multiple Windows, with redraw capability
• Graphics primitives including line drawing, styles, colors, filling, full font support, pixel

and floating point user coordinates
• High-resolution printer output, simply by replacing ginit() by pinit()
• Turtle graphics with full LOGO command set, multiple turtles
• Fully-integrated complete documentation on-line, like Borland's run-time library
• Windows menus

90

• Windows modal and modeless dialogs, compatible with Rosource Workshop; ready-to-
use input dialogs with validation for all standard data types

• VBX 1.0 custem control support
• Text window, supporting character-based I/O (cin/cout/getch/etc.)
• Low-level classes for easy access to the hardware, COMx, LPTx, and timers
• Support for bitmaps and sprite animation
• Simple container classes: list, queue, etc.
• Complete printed documentation
• Integrated Champ Project Manager for automatic creation of projects

Appendix 2: Syntax conventions

All program examples keep to the following conventions (proposition of Elemtel[] and
others):

Names of variables begin with lowercase letters, names of types with uppercase letters.
Every section of a composite name begins with an uppercase letter.

Pointers are introduced with the letter p, which is interpreted as the first letter of a name.

No type information is included in the name. (This goes against the habits of Windows
programmers, but to a great extent corresponds to the habits of scientific programmers.)

The conventions for the organization of the screen (indents, spaces etc.) can be seen in
the example programs.

Appendix 3: Basic terminology of object oriented
programming

3.1 Encapsulation, inheritance and polymorphism

Central to object oriented programming are objects that can be created and destroyed.
Objects usually possess certain attributes or properties (data members) and certain
abilities or behavior (member functions). Thus, the data and the functions operating on
this data form a unit. Figuratively spoken, the program, or actually intuitively the
programmer, sends messages to the objects which perform an action (as an illustration:
when the cat is sent the message "come", it jumps onto your lap) or change the attributes
(after the message "eat ", the cat is not hungry any more). In C++, sending a message
corresponds to calling an member function.

The programmer using the objects usually need not know what happens "inside" the
object, i.e. he need not know the details of the member functions and the data members.
In a certain way this information is hidden from the outside (information hiding), which at
the same time grants information protection : internal data is protected against

91

unintentional changes from the outside. This way of hiding the information is called data
encapsulation .

Contrary to this, in classical, not object oriented programming, sequential calls and
structures such as "if...then...", "repeat..." are central. In OOP the object, which on the one
hand contains data and on the other hand offers the functions that operate on those data,
is central. These functions will generally perform actions, but the actions are never
independent of the corresponding object: they are object oriented. According to Booch,
object oriented programming can generally be seen as "a message exchange between
objects and not as an application of functions to passive data" [3].

Objects are described through their belonging to a class . In other words, a class defines
an object type in which objects share common structure and behavior. A class can also be
called an abstract data type . While classical programming focuses on the sequence of
commands, object oriented programming begins by defining useful classes that possess
the requested abilities. The class definition contains both the internal data and the
methods (functions or procedures) which handle the data. This corresponds to the human
working technique of dividing complex problems into partial problems that can be solved
as independently as possible and the details of which need not be known in order to
handle the original complex problem, according to the principle of "divide and conquer" .

Crucial for object oriented programming is the possibility to introduce a class hierarchy .
This way, the objects of a new class can take over certain properties from the
hierarchically superior classes. This process is called inheritance . The new class is
called a derived class , the superior a base class . (Illustration: the class of the cats can
be derived from that of mammals, which can be derived from that of animals, which in turn
can be derived from that of living creatures.) We distinguish between a direct base class,
which immediately precedes a class, and an indirect base class, which is more than one
step higher in the hierarchic structure.

In object oriented programming, inheritance is used exclusively as a "kind-of" or "is-a" ,
but never as a "part-of" or "has-a" relation. For example, a cat is a kind of mammal and
that a kind of living creature. But it would be wrong to derive the class of cats from the
classes of hearts, lungs, livers, heads etc., because they are parts of a cat. Instead, parts
of an object should be implemented as data members of the corresponding class.

Objects of different classes can contain member functions of the same name (illustration:
the message "come" can be sent both to cats and to parrots). However, the inner
mechanism performed by that function in each of the objects can be totally different (the
message "come" triggers the action "walk" in a cat, but the action "fly" in a parrot). All the
same, different functions of the same name are unequivocally distinguishable, because
the scope of a member function is the class in which it is defined.

In a class hierarchy, member functions can be redefined in derived classes. In that case,
the old definition is overridden , i.e. instances of the derived class execute the redefined
function. This way, objects inside a class hierarchy are given changed or additional
abilities.

It is in the nature of class hierarchies that an object of a derived class can also be seen as
an object of the base class (illustration: a cat is, at the same time, an animal). This is why

92

a function expecting an object of the base class for a parameter can also be given an
object of a derived class (illustration: a function "come and eat" expecting an animal can
also be given a cat or a parrot). However, the message "come" has a different definition
for animals, cats or parrots (cats walk, parrots fly).
When we give the function "come and eat" a parrot as an animal, then "come and eat"
unfortunately executes the "come" of the animals and not that of the parrots, which is
usually not very welcome. To obtain the desired result, we declare the member function
"come" as virtual (in this case the parameter has to be a reference or a pointer).

The combination of overriding/overloading and virtual functions is called polymorphism .

A programming language with the three properties encapsulation, inheritance and
polymorphism is called object oriented.

3.2 Creation/destruction and visibility of objects

A software object takes up a certain amount of space in a computer's memory and exists
during a certain amount of time inside the program's execution time. For certain program
parts it is visible , for others it is invisible or hidden . Objects are described by their
belonging to a class. Through the definition of the class, however, no objects are yet
created.

The creation of an object, also called instantiation , can basically take place in two
different ways: either by means of a variable definition or of a creating operation . A
variable can not only be defined with entire program or file scope or in the head of a
function, but anywhere inside a program block. The lifetime of the object is restricted to
the program block, in which it was declared, i.e. it is automatically destroyed at the end of
the block and the memory space is made available. In contrast to this, a creating
operation can create an object during execution time. Such an object is called dynamic . It
is referred to by means of a pointer. Dynamic objects must be destroyed explicitly.

When the object is created, certain initializations might be necessary. Because of this,
when defining a class, we usually indicate a function that is automatically called when an
object is created. Such a function is called a constructor . When an object is destroyed, a
similar automatically called function, the destructor , can do the "cleaning up".

3.3 The parts of an object

An object consists of data members and of member functions . Basically, the data
members can be read and changed by the member functions. However, visibility towards
the outside should be carefully regulated, i.e. data should be encapsulated. This is why
there are three different types of access rights: parts of the object, i.e. data members and
member functions, can be declared private , protected , or public . Private parts are not
accessible from without the object (except by objects or functions that are specifically
declared as a friend). Protected parts are accessible from within derived classes. The
public parts are generally accessible.

93

In accordance with our habits of perceiving objects around us, software objects possess
the following five important properties: A state , a behavior , an identity , a lifetime , a
visibility , and a type .

state The state is defined by the values of the data elements which are
determined through initializing or assignment. During an object's lifetime,
the value of its data elements can change.

behavior The behavior of an object is determined through its member functions .
They have reading and writing access to the data members (withing the
access rights), but they can also return function values or change outside
data through reference parameters or pointers.

identity An object has an identity that makes it unequivocally distinguishable from
all other objects. Every object occupies a certain segment of the memory;
its name can also be understood as the name of that segment.

An object can also be referred to by means of a variable, the value of which
is the internal reference (memory address) of the object. Such a variable is
called a pointer to the object. This way, the object is referred to indirectly
through the pointer: this process is called dereferencing .

A reference variable can be considered as a pointer which is automatically
dereferenced.

Dynamic objects must be referred to exclusively in this way; this is why
pointers and references are very important in object oriented programming.

lifetime Usually, objects exist only during part of the program's execution time,
perhaps only within a block of program or a function. Part of a good
programming style is to minimize objects' lifetime.

visibility Generally, objects can be used only within certain parts of the program,
whereas in others they are "invisible" or "hidden". Visibility should be
carefully regulated in the interest of information protection, which takes
place on different scope levels (program, file, function, class).

type The object also unequivocally belongs to a class. Due to that, C++ is called
a typed language .

